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Abstract—Understanding the underlying structure of building
occupant dynamics is crucial to improving the effectiveness
and energy efficiency of commercial buildings, as occupants
fundamentally drive building design and operation. In current
practice, we largely account for occupant behavior in the design
and management of buildings through rudimentary schedules
of presence or absence. However, the increasing availability
of embedded sensors—such as plug load sensors—offers an
opportunity not only to monitor occupants’ activity patterns,
but also to use these patterns to gain insight into the network
structure of occupants. In this letter, we present a statistical
methodology for inferring this network, which comprises social,
spatial, and organizational ties among occupants. We apply our
method to a 7-person office environment in Northern California,
and we compare the inferred networks to ground truth social,
spatial, and organizational networks obtained through validated
survey questions. We demonstrate that this approach offers
insights into the complex nature of occupant dynamics, which
can ultimately serve as inputs into building design strategies that
minimize energy consumption and improve occupant well-being.

Index Terms—Inference algorithms, social networks, buildings,
building occupants.

I. INTRODUCTION AND RELATED WORK

BUILDINGS designed for commercial offices fundamen-
tally exist to enable effective work, typically evaluated

through measures of productivity, creativity, and/or collabora-
tion. Recently, given the large environmental impact of build-
ings, building professionals have espoused energy efficiency
as another key marker of a well-performing building.

The new paradigm of data analysis in the built
environment—enabled by new urban embedded systems—has
given researchers the opportunity to understand the operation
of buildings and cities through these lenses of environmental
performance and human activity (e.g., outdoor lighting con-
trol [1]; occupancy-driven operation of HVAC and lighting
[2]). Few studies, however, have used sensor data to model
human activity patterns and the natural structure of occupant
relationships in the built environment. As researchers in the
field of organizational behavior have long noted, understanding
these relationships can enable new office layouts that im-
prove workplace satisfaction and occupant performance [3].
Organizational relationships, or ties, are typically modeled
through surveys or interviews that take considerable time
and effort to administer. Often, ties are not measured at
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all, leaving managers with simple organizational charts that
describe workforce breakdowns by department or project and
lack any subtle insights into the true nature of office relation-
ships. Understanding these relationships can also be useful for
reducing energy consumption: Anderson et al. [4] found that
social network structure largely affects the efficacy of eco-
feedback campaigns, and we have found in previous work [5]
that ties can be useful for coming up with new layouts that
match occupant behavior with building systems.

While this previous work has noted the importance of
understanding the occupant network for energy and occupant
performance, little work has attempted to infer the true occu-
pant network. Some statistical and data mining tools have been
developed specifically for inferring network structure from
time series data. These methods have typically been applied
to biostatistical problems [6], though some recent work has
considered the problem of inferring social networks from time
series data about human activity [7]. In this letter, we expand
upon our work in [8] and adopt network inference methods
for the problem of inferring the occupant network structure
from distributed plug load energy sensors—sensors which are
becoming ubiquitous and, as discussed in [9], can be used to
model individual activity states at the desk level.

Facility and organizational managers understand the im-
portance of knowing the structure and performance of their
organizations. While energy efficiency is becoming more of
a priority, people and their productivity are still the most
expensive pieces of an organization—for the University of
California system, total employee salaries, wages, and benefits
were roughly 74 times more expensive than utility bills.
As a result, managers can be reluctant to make changes
to their buildings if they worry about negative impacts to
productivity. Research has long shown the potential energy
efficiency impacts of making changes to building layouts, and
recent studies have demonstrated that spatial changes in offices
can improve employee well-being and collaboration [3], [10].
In this work, we aim to use sensor data to automatically
infer the occupant network and understand space utilization
in more detail. Moving forward, we hope to enable work
that can co-optimize for building and human systems that are
fundamentally intertwined.

II. METHODOLOGY

In this section, we introduce a two-step process for inferring
the occupant network from raw sensor data. The first step
makes use of a method introduced in [9]: raw sensor data
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are collected from distributed plug load power strip sensors,
and these data are mapped to abstracted states of occupant
activities. In the second step, two different network inference
models are adapted from the literature and introduced for esti-
mating the network relationships among occupants as defined
by their activities. We note that collecting and analyzing data
related to occupant network relationships comes with several
risks and ethical concerns if misused (e.g., loss of privacy,
potential social embarrassment). In order to minimize these
risks, we collected and analyzed data in accordance with
the Institutional Research Board (IRB) and the IEEE Code
of Ethics, which included creating a transparent process for
obtaining consent for data collection, minimizing personal
information collected, and automating anonymization of data
during collection and analysis.

A. Determining occupant activities through plug load data

Consistent with previous work [9], we define a time series
of plug load energy use at the desk level for each occupant:

Xi,d = {x1, ..., xT } (1)

where i is the occupant index (for all occupants 1, ..., I), d is
the day index (for all days 1, ..., D), and T is the total number
of time steps in a single day (e.g., if data are collected at 15-
min intervals, T = 96). For the full dataset, we complete
a component selection process based on variational Bayesian
inference to determine the number of activity states present in
the plug load data. This enables our approach to be adaptable
to differing number of natural states across study groups. An
activity state can be defined as abstracted and categorized
information describing occupant behavior based on plug load
energy consumption. Once the number of activity states is
inferred, we complete a classification process that ascribes
each plug load energy datum to an activity state. The result
is an abstracted time series that describes overall changes in
activity states for all occupants in the study:

Xi,d 7→ Si,d (2)

where S contains the activity states. At each time interval,
all occupants are classified into one of the same number of
states. For complete details on this state classification method,
we refer the reader to [9]. In this work, we have found that
plug load sensors provide accuracy comparable to sensors
specifically designed for occupant detection, and we have
shown that shifts between states correspond accurately with
actual changes in behavior, such as going to a meeting.

B. Estimating the occupant network

Given time series data about occupant activities, the next
step is to infer the occupant network as defined by relative
similarities in the activity data. We define an occupant network
as a graph G = (V,A), where V is the set of occupants and A
is the adjacency matrix of the graph. We explore two options
for inferring the adjacency matrix: the graphical lasso, which
estimates the inverse covariance matrix [6]; and the influence
model, which estimates an ‘influence matrix’ [7].
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Fig. 1. Influence model schematic with I entities (adapted from [7]), where
S indicates state, and x indicates the signal.

Graphical lasso: The graphical lasso was developed as a
method for inferring sparse undirected graphical models—
also known as Markov random fields—through L1 (lasso)
regularization. In the literature [6], the data are defined as
N multivariate observations with dimension p, mean µ, and
covariance Σ. In our case, N = D·T (the total number of time
steps), and p = I (the number of workstations/individuals).
The graphical lasso makes use of coordinate descent to es-
timate the inverse covariance matrix (Σ−1), which is often
considered as the adjacency matrix in a Markov random field.

Influence model: The influence model, discussed in [7],
models the interaction among entities quite differently. The
model is based on a generally coupled Hidden Markov Model
(HMM), in which the state of each entity (in our setting, Si)
at any given time point t is determined by the state of all
entities S1,...,I at the previous time point t − 1. A graphical
representation of the Influence Model is shown in Figure 1.
The authors use Expectation Maximization to estimate the
parameters of the model. One of the key parameters that
is learned is the matrix R—the ‘influence matrix’—often
interpreted as an adjacency matrix in a network.

The output of each model is a matrix that we consider as the
adjacency matrix defining a weighted, directed network. For
consistency, we refer to these matrices as Aglasso and Ainfl,
where the entry Ai,j represents the strength of the tie from
occupant i to occupant j. The two models proposed here
for learning network structure are based on fundamentally
different assumptions. In the graphical lasso, the entries of
Aglasso can be interpreted as measures of conditional depen-
dence (i.e., if the entry i, j is zero, entities i and j are
conditionally independent given all other variables). In the
influence model, the entries of Ainfl can be interpreted as the
strength of influence between two entities given the time-step-
dependent HMM assumptions embedded in the model. Fitting
each of these models to the data may provide different insights
(e.g., the graphical lasso may effectively model structural
relationships, while the influence model may be better at
capturing spontaneous trends in behavior, such as when two
occupants take a break together).

III. RESULTS AND DISCUSSION

To analyze the performance of our occupant network infer-
ence methodology, we applied it to a dataset from a three-
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room, seven-person office setting in Northern California. We
collected plug load energy consumption data at 15-minute
intervals through HOBO data loggers for a two-week period
at each of the seven occupants’ individual workstations. Each
workstation included a computer and usually a monitor and
other small office loads such as phone chargers. We applied
the network inference method from section II, producing two
networks defined by adjacency matrices Aglasso and Ainfl. We
also collected ground truth spatial, social, and organizational
network data through an online survey (discussed below) to
benchmark the inferred network against validated methods for
capturing strengths of relationships.

We assume that the ground truth network can be character-
ized by three equally important relationship components: spa-
tial, social, and organizational. Previous work has suggested
these three components are fundamental to the similarities and
dissimilarities in occupant behavior [5], but future work should
consider how each individual network component relates to
the inferred network structure. We refer to each ground truth
network component as A∗spatial, A∗social, and A∗org.

Spatial dimension: To embed the spatial dimension in the
ground truth network, we set the entry A∗spatial

i,j = A∗spatial
j,i = 1

if occupants i and j are situated in the same office, and 0
otherwise.

Social dimension: For the social dimension, we used the
results from a survey question answered by all occupants.
We adopted the ‘inclusion of the other in the self’ scale
[11], which has been shown to be effective in measuring the
closeness of social relationships. In the survey, each occupant
can choose any value between 1 and 7 to describe their
perception of the closeness of their relationship to all other
occupants. These values are then linearly scaled between 0
and 1, and they become the entries in the A∗social matrix,
where occupant i’s response about occupant j becomes the
entry A∗social

i,j .
Organizational dimension: We adopt the methods intro-

duced in Krackhardt & Hanson [12] to measure the structure
of the organizational network among the seven occupants. The
survey asks occupants whom else they (1) share information
with, (2) seek technical advice from, and (3) seek personal
advice from. The relationship is interpreted to be 0 if none
of the three are true and 1 if all three are true, with a linear
scale between 0 and 1 if one or two of the characteristics
of organizational relationships are true. Occupant i’s response
about occupant j becomes the entry A∗org

i,j .
We combined these ground truth dimensions into a single

network by equally weighting their adjacency matrices and
adding them together. We refer to the combined network as
A∗. Comparing the overall structure of two networks (such as
A∗ to Aglasso) remains a difficult problem in network science,
though certain common network-level techniques (e.g., com-
munity detection) can be used to compare high-level structure.
To investigate the similarities and differences among our three
networks, we adopt the node2vec algorithm introduced in [13].
The purpose of node2vec is to embed the network nodes
into an n-dimensional feature space based on the topology
and structure of the network, where n is chosen by the
user. The algorithm can be useful when applying machine

learning algorithms on network nodes, but it can also be
used to understand underlying network structures and compare
networks both visually and computationally. The smaller the
Euclidean distance between two nodes in the embedded feature
space, the more similar they are. The left-hand side of Figure
2 shows the results of applying node2vec to the three networks
(A∗, Aglasso, and Ainfl). Here, we choose n = 2 for ease of
plotting and visual comparison. Visually, the three networks
all share a similar overall structure: occupants 1, 6, and 7
tend to be centrally located, with occupants 2, 4, and 5 on
one side of them and occupant 3 on the other. The edges
between the occupants indicate a relationship in the network,
with the thickness of the line indicating relative tie strength.
For someone with knowledge about this organization, it would
make intuitive sense that occupants 1 and 7 are centrally
located: occupant 1 is the group director, and occupant 7
is the highest-ranking member. But the relative centrality
of occupant 6 in the 2-dimensional network representations
requires further investigation.

To further explore these intricacies of network comparison,
we plot the sum of in- and out-degree centralities for all
three networks on the right-hand side of Figure 2. In-degree
centrality for node j in a network defined by adjacency matrix
A is defined as

∑
i Ai,j , and out-degree centrality for the same

node is defined as
∑

i Aj,i. We can see that occupant 6 has
large degree centrality resulting from all three components of
the ground truth network, but especially the social component.
This social centrality of occupant 6 highlights the value of the
automated network inference method proposed in this paper.
While the building or organizational manager might guess
that occupant 1 (the director) or occupant 7 (the highest-
ranking member) would be highly-connected and relatively
central occupants, he or she would have no reason to think that
occupant 6 also has a central role without conducting a survey.
When applied to large office environments (that could even
involve multiple buildings), this type of network inference can
offer subtle insights into social and organizational relationships
that would require extensive time, effort, and investment to
uncover through surveys.

Figure 2 also provides subtle insights into the differences
in the ways that the influence model and the graphical lasso
analyze the data. Both occupant 1 and occupant 6, according
to the ground truth network, have large centrality from a
social and organizational perspective. However, occupant 1
sits in his or her own office, and—based on the assumptions
made about spatial relationships—has zero spatial centrality,
whereas occupant 6 has high spatial centrality. It is inter-
esting to note that occupant 6 has very high centrality in
all three networks, whereas occupant 1 only has relatively
high centrality in A∗ and Aglasso. Is is therefore possible that
the influence model is more sensitive to spatial effects. As
discussed above, the influence model may be more adept at
capturing ‘spontaneous’ changes in behavior, given its time-
step-dependent HMM assumptions. It is quite possible that
spatial cues are important for these kinds of spontaneous
changes in behavior (e.g., one may be more likely to take
a break if one sees one’s office-mate doing so). It is also
interesting that occupant 3 has high degree centrality in both
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Fig. 2. Network comparison using node2vec representations in R2 (the two
axes represent the two dimensions). Degree centralities for each occupant
shown to the right of each node embedding plot.

Aglasso and Ainfl, but not in A∗—indicating that there may be
other subtle aspects of relationships in activity patterns beyond
the spatial, social, and organizational effects considered here.

IV. CONCLUSIONS AND FUTURE WORK

In this letter, we expand on a method originally introduced
in [8] that automatically infers the occupant network from
plug load energy consumption data collected at the desk level
in an office building. By comparing inferred networks to the
ground truth collected through surveys, we have shown that
our method captures network characteristics that are both
expected based on organizational structure and ‘hidden’ in
occupant social and spatial relationships. Through a case study,
we discuss the similarities and differences of the two key
network construction methods—the graphical lasso and the
influence model.

While our case study is small in size—and future work is
required to demonstrate that valid inferences can be made in
larger settings—it does demonstrate the potential for near real-
time, automatic, and robust inference of the subtle aspects of
organizational structure in buildings. In our future work, we

aim to explore how spatial relationships obtained from floor
plans can be embedded into the existing network inference
methods, further adapting the inference to the specific context
of building occupant networks. We also aim to explore how
the networks change over time and in response to perturba-
tions such as spatial rearrangement or the addition of a new
employee.

In the end, a deeper understanding of building-occupant dy-
namics could enable the design and management of productive
and energy-efficient spaces.
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