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ABSTRACT 6 

Commercial buildings account for much of the energy use both in the United States and 7 

globally.  The role of occupant behavior within the physical building has been found to be an 8 

important factor in the overall energy use profile of commercial buildings.  Recent research has 9 

noted the potential energy savings that can be achieved when occupant behavior is beneficially 10 

modified.  However, frameworks for analyzing occupant behavior are limited in their ability to 11 

simultaneously consider three key dimensions of occupant-driven energy use in buildings:  12 

spatial, temporal, and social.  In this paper, we present the Occupant Energy Signal Processing 13 
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on Graphs (OESPG) framework, which is able to address the three key dimensions of occupant 14 

energy use in commercial buildings through an inherently scalable mathematical structure.  We 15 

demonstrate the mechanics, applicability, and merits of the OESPG framework by applying it to 16 

occupant energy use data through both a simulated example and real test-bed data from a 17 

commercial office building.  We find that OESPG is able to identify situations in which occupant 18 

energy use through plug loads is out-of-sync with what would be expected based on nuanced 19 

spatial and organizational identity, and we note the feasibility of using this framework to make 20 

recommendations for temporal and spatial occupancy shifts that would have a positive impact on 21 

occupant energy use. 22 

INTRODUCTION 23 

Commercial buildings are responsible for nearly 20% of current energy use in the United 24 

States, and they are projected to be the fastest growing energy demand sector worldwide (U.S. 25 

Energy Information Administration 2016a; b).  As a result, researchers are developing new 26 

approaches to enhance the energy efficiency of commercial buildings and reduce the associated 27 

environmental emissions and negative sustainability impacts of their energy usage.  Specifically, 28 

new approaches that bridge the gap between physical building systems and the behavior of 29 

building occupants have shown significant promise to enhance the energy efficiency of 30 

commercial buildings (Azar and Menassa 2012; Hong and Lin 2012; Meier 2006).  However, 31 

realizing savings from such new approaches will require a comprehensive and nuanced 32 

understanding of occupant behavior as energy usage has been shown to vary dramatically due to 33 

occupant dynamics (Clevenger and Haymaker 2006). 34 

With regard to individual occupants, differences in their locations within a commercial 35 

building (spatial dimension) as well as variations in their schedules (temporal dimension) can 36 
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have strong implications for how the building uses energy (Jazizadeh et al. 2014; Kwak et al. 37 

2014; Lim et al. 2012).  Social and organizational networks of people (social dimension) have 38 

also been found to be an important factor in the energy use trends within a commercial building 39 

(Anderson et al. 2014; Chen et al. 2012; Khashe et al. 2016). As a result, a successful socio-40 

technical and occupant behavior based approach to energy efficiency for commercial buildings 41 

will require reconciling and analyzing the three key dimensions (spatial, temporal, social) by 42 

which building systems and occupants consume energy. 43 

The advent of data streams from low-cost building sensors offers an opportunity to 44 

improve the granularity by which we understand building energy use trends in the temporal, 45 

spatial, and social dimensions.  This improved understanding from high-fidelity data streams 46 

enables optimization of building design and controls so that buildings can run more efficiently.  47 

However, the methods typically used to analyze occupant energy use data are limited due to their 48 

ability to capture only one or two of the three aforementioned key dimensions affecting energy 49 

use in commercial buildings.  In this paper, we introduce the Occupant Energy Signal Processing 50 

on Graphs (OESPG) framework, a scalable computational framework for multidimensional 51 

analysis of building energy usage data inspired by the emerging field of signal processing on 52 

graphs (Sandryhaila and Moura 2013).  We demonstrate the mechanics, applicability, and merits 53 

of our proposed framework using a simple simulated example and case-study example comprised 54 

of real data from a test-bed office building in Denver, CO.  55 

BACKGROUND 56 

Occupant and Data-driven Energy Efficiency in Buildings 57 

Numerous studies have found that occupant behavior plays a major role in both 58 

residential (Gill et al. 2010; Guerra Santin et al. 2009; Majcen et al. 2015; Martinaitis et al. 2015) 59 
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and commercial (Bonte et al. 2014; Hong and Lin 2012; Norford et al. 1994) building energy 60 

performance. Specifically, previous work has indicated that in commercial office spaces, total 61 

energy consumption can be expressed as a combination of a baseline amount of energy 62 

consumption and human-driven energy consumption (Taherian et al. 2010).  This human 63 

element, though important in a commercial building’s energy use, is typically difficult to 64 

characterize.  As a result, recent studies have developed new simulation methods and approaches 65 

to model and study occupant behavior in commercial buildings.  Azar and Menassa (Azar and 66 

Menassa 2012) proposed an agent-based simulation modeling method to study occupants’ energy 67 

use characteristics as they change over time.  Occupant-based models such as these can also be 68 

coupled with whole-building energy simulation tools to develop models that building 69 

management systems can leverage to address the complex interactions between occupancy and 70 

building performance, and ultimately help find opportunities for improved energy efficiency 71 

(Menassa et al. 2013). 72 

While providing valuable insight, simulation driven methods and approaches are limited 73 

in their ability to leverage new high-fidelity and spatially-granular energy usage data streams in 74 

their analysis.  Such energy usage data streams could provide deeper insight on human-driven 75 

energy consumption at the spatial level of the individual occupant and at sub-hourly temporal 76 

intervals. As a result, recent work has begun to leverage these data streams to improve our 77 

understanding of energy usage of the built environment (Agarwal et al. 2010; Kazmi et al. 2014; 78 

Menzel et al. 2008; Milenkovic and Amft 2013).   However, in such data-driven studies the 79 

multi-dimensionality of occupant energy usage optimization is not directly addressed.  In the 80 

following section, we review the three key dimensions of occupant energy usage and classify 81 
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existing data-driven methods and frameworks in terms of such dimensions to elucidate the 82 

primary gap within the current body of work in data-driven occupant energy use analysis. 83 

Dimensions of Occupant Energy Usage 84 

The way in which occupants use energy in commercial buildings can be characterized by 85 

three key dimensions: spatial, temporal, and social.  The spatial dimension characterizes where 86 

within a building an occupant consumes energy and requires services from building systems. As 87 

a result, the spatial dimension is typically considered by building designers and operators by 88 

implementing HVAC zoning to improve thermal comfort and, in some cases, energy 89 

performance (Smith et al. 2012).  Similarly, the temporal dimension characterizes the time of the 90 

day in which occupants are present, using energy, and requiring services from building systems 91 

(i.e., occupant schedules). From a high level, this is captured through rudimentary occupant 92 

schedules that are often built into energy simulations to try and match predicted energy use with 93 

actual building energy use (Clevenger and Haymaker 2006; D’Oca and Hong 2015).  The social 94 

dimension can be characterized by the organizational network dynamics that describe occupant 95 

interactions and aspects of occupant behavior in buildings.  The impact of the human element is 96 

often overlooked due the challenges in modeling occupant behavior, but recent studies have 97 

noted that understanding the social dimension has great importance when it comes to minimizing 98 

building energy use (Anderson et al. 2014; Gulbinas and Taylor 2014).  For example, the 99 

inherent social dynamics that describe occupant behavior within a building have been found to 100 

have large implications for the effectiveness of energy-use feedback tools that report real-time 101 

energy consumption information to occupants (Gulbinas and Taylor 2014).  Given the ability to 102 

analyze energy use data on a sub-building level using sensors, recent building energy analysis 103 

methods and frameworks that recommend efficiency strategies have begun to address these three 104 
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dimensions, but in many cases only individually.  In the following subsections, we briefly 105 

discuss current frameworks and classify them in terms of their primary dimension of concern.  106 

Spatial Dimension:  One body of work has looked at improving control of building zones 107 

in concert with thermal conditions and preferences of occupants. Such work has been found to 108 

improve overall indoor thermal comfort and avoid situations where energy is unnecessarily 109 

wasted (Jazizadeh et al. 2013; Schoofs et al. 2011).  Azar and Menassa (2015) proposed a data-110 

driven framework to analyze occupancy spatially and propose energy saving actions.  111 

Additionally, matching occupant preferences with a decentralized control strategy has been 112 

found to have significant energy saving potential (Jazizadeh et al. 2014).  A spatially driven 113 

analysis framework has also been developed for lighting and has yielded energy savings on the 114 

order of 50% in case studies (Krioukov et al. 2011). 115 

Temporal Dimension:  Recently developed frameworks for improving building energy 116 

efficiency consider the scheduling of building activities, and the matching of building schedules 117 

with occupancy predictions and/or measurements (Lim et al. 2012; Majumdar et al. 2012, 2016).  118 

The synchronization of occupancy predictions with optimized scheduling of meetings has been 119 

tested as a strategy for reducing energy consumption in office buildings (Majumdar et al. 2012).  120 

Moreover, recent work has also aimed to temporally characterize and predict occupant energy 121 

usage in order to identify patterns that could be utilized to formulate energy efficiency strategies 122 

for a commercial building (Gulbinas et al. 2015; Khosrowpour et al. 2016).   123 

Social Dimension:  Modeling occupant behavior has been shown to improve the 124 

understanding of building occupants’ changing energy use characteristics over time (Azar and 125 

Menassa 2012).  Beyond individual occupant behavior, the organizational network dynamics that 126 

follow from the social structure of the building have been found to play an important role in 127 
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improving building energy efficiency (Anderson and Lee 2016; Khashe et al. 2016; Manika et al. 128 

2013; Siero et al. 1996).  As interventions are proposed for energy-efficiency purposes in office 129 

buildings, the social network structure of the occupants has been shown to be critical in 130 

determining and predicting the absolute effectiveness of the intervention strategy (Anderson and 131 

Lee 2016).  Additionally, the formation of human networks in buildings has also been found to 132 

be influenced by the form of the office building, drawing a connection between the human and 133 

the spatial dimension of occupant behavior (Sailer and McCulloh 2012).  Despite the growing 134 

evidence regarding the impact the social dimension can have on occupant energy usage and 135 

commercial building operations, no frameworks have been proposed to analyze the social 136 

dimension individually or in tandem with other dimensions. 137 

Thus, there is significant opportunity to further understand how human dynamics and 138 

spatial and temporal variability of occupant energy consumption within a building can lead to the 139 

identification of energy saving opportunities.  Previous studies have been limited by their scope  140 

in analyzing all three dimensions of occupant-driven energy efficiency, and, as a result, they may 141 

not yield the insight into the complex dynamics of building energy use necessary to maximize 142 

energy savings associated with new occupant driven approaches to energy efficiency.  In this 143 

paper, we introduce—and test on real data—the Occupant Energy Signal Processing on Graphs 144 

(OESPG) framework, a scalable computational framework that is capable of analyzing all three 145 

dimensions of occupant-driven energy efficiency in buildings.  The framework aims to provide a 146 

method for identifying situations in which energy use in the study building is not in 147 

synchronization with what would be expected based on the temporal patterns, spatial layout and 148 

organizational network structure of the building’s occupants, thereby simultaneously addressing 149 

the three key dimensions of occupant energy usage in commercial buildings.   150 
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METHODOLOGY 151 

Applying the OESPG framework to building energy use data consists of four main steps: 152 

(1) gather data describing the building’s spatial layout, social structure, and time-series energy 153 

use, (2) construct a graph representing the spatial and organizational structure of the building, (3) 154 

analyze building energy use data by representing the data as signals, and (4) characterize the 155 

energy use data.  In this section, we introduce the framework, highlight the underlying 156 

mathematical and graph theory concepts from the literature, and demonstrate the mechanics of 157 

the framework using a simulated example.  We utilize energy use data at the plug load because it 158 

provides a good proxy for changes in occupant behavior (see the Appendix for further 159 

information and empirical data). 160 

Discrete Signal Processing on Graphs 161 

The emerging field of signal processing on graphs (Sandryhaila and Moura 2013; 162 

Shuman et al. 2013), develops methods of analysis of signals supported by graphs. In particular, 163 

the Discrete Signal Processing on Graphs (DSPG) framework in (Sandryhaila and Moura 2013, 164 

2014) extends concepts from traditional signal processing to data that can be indexed by vertices 165 

on graphs.  Signals indexed by graphs arise in many situations where data is collected, including 166 

measurements from sensor networks (Akyildiz et al. 2002), community preferences (Leicht and 167 

Newman 2008), and many others.  A central contribution of the current work is to expand and 168 

adapt the underlying concepts from DSPG for the problem of multi-dimensional analyses of 169 

building energy use data. As such, our OESPG framework adopts the adjacency matrix of the 170 

graph structure as its main building block and utilizes a graph Fourier transform to expand a 171 

signal into a Fourier basis in the graph spectral domain.  172 

Consistent with previous work (Sandryhaila and Moura 2013), we define the 173 

relationships between data elements (i.e., occupants) as a graph ! = #,% , with & occupant 174 
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nodes, where # = '(, . . . , '*+,  is a set of occupant nodes and % is the weighted adjacency 175 

matrix of the graph.  Each data element is indexed by an occupant node '-, and each weighting 176 

%-,. of the edge from '- to '. describes the directed weighting from the nth node to the mth 177 

node. The distinct eigenvalues /(, … , /*	of the adjacency matrix % are the graph frequencies and 178 

form the spectrum of the graph.  The eigenvector corresponding to any graph frequency is the 179 

frequency component corresponding to that frequency. 180 

For each node, power draw values are continuously collected. The power values are 181 

defined for each occupant in the set: 182 

ℙ = 3(,… , 3-+, 	∀	5 ∈ & (1) 183 

where ℙ is the set of all power vectors (37) for all N occupants and n is the node index.  Each 184 

occupant’s power values are collected in the vectors defined above, and defined as: 185 

3- = ;-< , … , ;-=  (2) 186 

where 37 is the vector of all power draw values for occupant n, t is the time index, and T 187 

is the total number of periods of data collection.  It is important to note that when analysis is 188 

being conducted in near-real time parameter T will continue to grow as data is collected and 189 

more time periods are added to the power draw vector 37 .   190 

In order to account for variations in typical power draw values for the different occupant 191 

workstations, power values are normalized using a running normalization process: 192 

;-< =
@A
B

@A
B,CDE (3) 193 

where ;-<  is the normalized power draw value at time F for occupant 5, and ;-
<,.GH is defined as: 194 

;-
<,.GH = IJK ;-<+L, … , ;-<  (4) 195 
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where M is a parameter indicating the number of periods over which the current value is 196 

normalized.  For example, if M = 12, and the time step is chosen to be one hour, the running 197 

normalization normalizes each value over the previous 12 hours of data. 198 

Finally, each snapshot of normalized plug load power draw becomes an individual graph 199 

signal, defined as a map: 200 

;-< ('-) ↦ R- (5) 201 

where R- represents the graph signal coordinate associated with the occupant node '-.  The 202 

graph signal can be represented as a vector: 203 

S = R(, . . . , R* = ∈ ℝ* (6) 204 

We utilize a Fourier transform to expand the signal into the graph spectral domain.  In 205 

this initial work, we assume a graph structure with undirected edges, such that %-,. = %.,-, 206 

causing eigendecomposition of % to be in the real domain.  As such, the eigendecomposition is 207 

as follows: 208 

% = UVU+, (7) 209 

and the graph Fourier transform of the signal s is: 210 

R = XR (8) 211 

where X = U+, is the graph Fourier transform matrix. The values of R- characterize the 212 

frequency content of the signal R.  To analyze the frequency content of the signals in the context 213 

of the graph frequencies, we utilize the concept of total variation on graphs from DSPG 214 

(Sandryhaila and Moura 2014), which provides a mathematical basis for ordering frequencies.  215 

In classical discrete signal processing, the total variation of a discrete signal is defined as the sum 216 

of magnitudes of differences between consecutive signal samples.  Total variation applied to 217 
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arbitrary graphs, such as the graph defining occupant relationships, is determined by the 218 

eigenvalues of the adjacency matrix %.  The total variation of an eigenvector Y- of a matrix % is: 219 

Z[\ Y] = 1 − _A
|_CDE	|

Y] , (9) 220 

where Y] , is the L1-norm of the eigenvector Y].  The Z[\  value for each normalized proper 221 

eigenvector is between 0 and 2.  Theoretical analysis of the Z[\  concept can be found in 222 

(Sandryhaila and Moura 2014).   223 

By sorting frequencies from low to high by their total variation, the variability associated 224 

with the differences in weighting between nodes becomes accessible.  If a signal’s frequency 225 

content is concentrated in the lower frequencies, the variation in the signal’s values follows the 226 

weighting pattern of the graph, i.e., two nodes with a relatively high weighting between them 227 

would have relatively similar expected signal values. When signals from sensors across a spatial 228 

and social domain are expected to have little variability (as would be the case when occupants 229 

who are both near each other and part of the same organization are using relatively similar 230 

amounts of energy), the graph spectral plot would be expected to have this characteristic shape.  231 

However, with more variability across nodes with large edge weightings, the signal would have 232 

more of its energy in the higher frequencies.  This change in the graph spectral plot could allow 233 

for potential flagging of unexpected occupant energy use in a given building or floor plan. 234 

Fig. 1 depicts the overall flow of the OESPG framework.  First, physical locations of 235 

occupant workstations as well as the organization or team to which the occupant belongs to are 236 

recorded (1).  We note that the framework can be utilized for lower spatial resolutions (e.g., 237 

groups of desks), but a key strength of the OESPG framework is its ability to efficiently process 238 

high spatial resolution data.  This spatial and social information is used to construct a graph that 239 

describes the underlying structure of the building (2). The computationally intensive part of the 240 
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framework is the eigendecomposition of the graph’s adjacency matrix (3), which allows the 241 

structure of the building’s occupant network to be decomposed into characteristic frequencies 242 

and characteristic frequency components that describe variability across the graph structure—243 

with higher frequencies indicating localized areas of higher signal variability across the 244 

constructed graph.  The eigendecomposition results in the graph Fourier transform matrix (4), 245 

and using the concept of total variation on graphs (5), the frequency spectrum can be ordered 246 

from high to low (6).  The eigendecomposition of the adjacency matrix need only be done once, 247 

allowing the framework to easily scale to large buildings—and even districts of buildings—with 248 

thousands of occupants.  Once the graph describing the spatial and organizational layout of 249 

occupants in the building has been defined and decomposed, energy use data collected through 250 

plug load sensors can be analyzed in the spectral domain.  The plug load sensors collect 251 

snapshots of power usage at regular intervals, which become the signals in the OESPG 252 

framework (7). The iterative aspects of the framework involve normalizing the data (8-9) and 253 

multiplying the normalized signal (10) with the graph Fourier transform matrix to determine the 254 

frequency content of the signal (11).  This process allows for the creation of the frequency plot 255 

(12), which can be analyzed to understand spatial, temporal, and social dynamics of each energy-256 

use signal.  As long as data is being collected (13), new signals can be defined and new 257 

frequency plots can be created at each period. 258 
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 259 

Fig. 1. OESPG framework flow 260 

SIMULATED EXAMPLE 261 

In this subsection, we present a simple simulated example to elucidate the core concepts 262 

of OESPG and demonstrate its applicability to identifying potential anomalies in energy use 263 

across the floorplan of a building.   264 

Data Simulation 265 

The floorplan, social network structure, and energy use data are all simulated in this 266 

example.  The relative locations of the simulated plug load sensors are shown in Fig. 2.  Eight 267 

sensors are used, with three clusters of individuals.  The two corner clusters each contain three 268 
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individuals sitting near each other, with each of the two clusters belonging to a different 269 

organization.  The cluster of circles on the bottom left of the figure is organization 1 (blue 270 

circles), and the cluster of squares on the top right is organization 2 (red squares).  The third 271 

cluster of two individuals, located directly in between the two corner clusters, contains one 272 

individual from each organization.  273 

 274 

Fig. 2. Simulated floor plan with plug load sensors in three spatial clusters and two 275 

organizations (circles and squares) 276 

Energy use data streams for each sensor provide a snapshot of power usage for the sensor 277 

at 20 minute intervals.  The simulated sensors capture data for simulated occupant workstations 278 

that can be in one of three states: working, on break, or not present.  Values for these states are 279 

derived from a study by Lawrence Berkeley National Lab on representative power draw from 280 
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commonly used office desk equipment.  The purpose of assigning typical real power draw values 281 

to occupant states is to simplify the simulated example for illustrative purposes.  The “not 282 

present” state is assigned to 2W of power draw (roughly corresponding to a laptop and monitor 283 

in off mode), the “on break” state is assigned to 10W of power draw (roughly corresponding to a 284 

computer display and laptop in sleep mode), and the “present state” is assigned to 50W of power 285 

draw (roughly corresponding to a laptop and monitor in awake mode) (Lawrence Berkeley 286 

National Laboratory 2016).  The standard work schedule is chosen as 9am-5pm, with an hour 287 

lunch break at 12pm.  Variations on this schedule are used to test how spatial, temporal, and 288 

social variations in occupant energy use can be captured using the proposed framework. 289 

Graph Construction 290 

Using the simulated locations of sensors on a floorplan as the basis for a graph, the 291 

adjacency matrix can be calculated.  The graph is constructed as an undirected weighted graph 292 

wherein each node is connected to all other nodes.  Edge weightings are calculated through two 293 

components: (1) the Gaussian weighting function capturing the physical distances between 294 

sensor locations, and (2) a binary function capturing the organizational identity of the sensor and 295 

its associated occupant.  For two nodes n and m, the graph weighting is found as 296 

%-.. = %..- = a+
bA,C
c

cdc + fgh 5,I  (10) 297 

where i-,.  is the Euclidean distance between the nodes, the Gaussian standard deviation j is a 298 

user defined parameter that controls the width of the distribution (for the purpose of this 299 

example, we assume the standard j = 1), and the function gh 5,I  describes the social network 300 

relationship between the two nodes, with gh 5,I  taking a value of 1 if the two occupants are in 301 

the same organization, and 0 if the two occupants are not in the same organization.  In this 302 

example, therefore, the social structure is modeled directly after each occupant’s organizational 303 
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identity, but we note that other relationships, including those at the sub-organization level, can be 304 

utilized to build the social component of the edge weightings.  Additionally, the social 305 

dimensions could include other relationships beyond institutional identity, such as networks of 306 

friends or social groups.  However, for this analysis, the social dimension is limited to 307 

organizational identities.  The weighting f weights the importance of the social dimension of the 308 

graph structure, with a higher value indicating that the social dynamics are expected to be of 309 

higher importance.  For our example, we assign f to be equal to 1 indicating that social 310 

dynamics are of the same importance as spatial dynamics. 311 

The spatial component of the graph construction gives a larger weighting to edges 312 

connecting nodes that represent sensors physically near each other, and smaller weighting to 313 

edges connecting nodes that represent sensors far away from each other.  The intuition behind 314 

this notion of edge weighting comes from the expectation that individuals sitting near each other 315 

are more likely to have similar energy use and occupancy patterns compared with individuals 316 

sitting far apart from each other.  Additionally, the social component of the graph construction 317 

gives larger weighting to edges connecting nodes that are part of the same organization, 318 

following the intuition that people of the same network would be expected to have relatively 319 

similar energy use and occupancy patterns. 320 

Analysis 321 

Given the eigendecomposition of the adjacency matrix, as found in eq. (7), each energy 322 

use signal can be expanded into the graph spectral domain, following the OESPGs framework 323 

process described above.  Fig. 3 shows the graph spectral plot for each of four possible schedules 324 

in the simulated building.  In the schedules shown in the figure, dark green is associated with the 325 

working state, light blue with the on break state, and white with the not present state.  The graph 326 
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spectral plots to the right of the schedules show the frequency content for the 12pm signal.  This 327 

signal is chosen because the simulated schedule shifts have impacts on which occupants are on 328 

break and which are at their desk at 12pm.  Fig. 3a is the baseline scenario in which each 329 

occupant in the simulated building has the same schedule: start work at 9am, take a break from 330 

12pm to 1pm, and leave at 5pm.  Fig. 3b-d represents scenarios in which shifts by one or more 331 

individuals are made according to the associated schedule.  The spectral analysis for each 332 

scenario indicates that the change in schedule has impacts on signal frequency content.  A 333 

sensitivity analysis on the parameters introduced in eq. (10) shows that varying either σ or α has 334 

little effect on the frequency plots.  In the sensitivity analysis, we allowed σ and α to change by 335 

multiplying or dividing by 2, and in all cases, we observed the same overall trends as shown in 336 

Fig. 3, in which σ = 1 and α = 1.  After the running the sensitivity analysis on scenario (d), the 337 

maximum change for the lowest frequency was 0.7% and the maximum change for two highly 338 

expressed high frequencies (indexed 7 and 8) was 12%. 339 
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 340 

Fig. 3. Schedules and graph spectral plots for simulated example 341 
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Simulated Example: Results and Discussion 342 

When all eight simulated plug load sensors follow the same schedule, the graph spectral 343 

plot indicates that the analyzed signal’s frequency content is concentrated in the lowest 344 

frequencies, as shown in Fig. 3a.  When one individual shifts his or her schedule, as tested in Fig. 345 

3b, the graph spectral plot shows an increase in signal energy in the higher frequencies.  This 346 

increase in high frequency energy is caused by the now-incongruous energy use patterns between 347 

the shifted individual (occupant 1) and the two non-shifted individuals in the same cluster who 348 

are closely related to occupant 1 both spatially and socially (occupants 2 and 3). 349 

Fig. 3c and Fig. 3d show two examples in which all of organization 2 shifts along with 350 

one member from organization 1.  Occupants 5-8, who comprise all of organization 2, all shift 351 

their schedule by one hour in both scenarios.  When occupant 4 shifts with them, the graph 352 

frequency plot shows increased power in the middle frequencies.  When occupant 1 shifts with 353 

them, the graph frequency plot shows increased power in the higher frequencies.  This result 354 

makes sense given that occupant 4, while engaging in behavior different from the rest of his or 355 

her organization, is both more spatially related to organization 2 and less spatially related to 356 

organization 1 than is occupant 1.  When occupant 1 shifts, the result is similar to that from the 357 

situation depicted in Fig. 3b.  If we are interested in detecting situations that could lead to 358 

recommendations for more efficient building management, this analysis can provide insight into 359 

subtleties associated with complex occupant behavior.  The situations in (c) and (d) seem very 360 

similar, yet it becomes clear from this analysis that the spatial incongruity in (d) would make it 361 

impossible to implement energy-saving strategies such as reduced HVAC service to a zone 362 

encapsulating the cluster of occupants 1, 2, and 3.  363 

A single detection of this incongruity could lead to recommendations for schedule shifts 364 

that more closely align spatially-related individuals of the same organization or across 365 
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organizations, allowing for potential energy savings.  Repeated detections could also lead to 366 

recommendations for spatial adjustment of occupants, which could also lead to potential energy 367 

savings.  This simulated example illustrates the ability of the OESPG framework to identify 368 

incongruities along the three dimensions of occupant energy use that it analyzes, by detecting 369 

large values for the higher frequencies in the frequency plot.  The example highlights the power 370 

of the framework in terms of detecting situations in which recommendations for energy 371 

efficiency strategies could make a real impact on a building’s performance. 372 

CASE STUDY: OFFICE BUILDING IN DENVER, CO 373 

In this section, we apply the OESPG framework to analyze real data and formulate 374 

strategic recommendations for energy efficient operations of a case study office building in 375 

Denver, CO. 376 

Data Collection and Normalization 377 

Data was collected using off-the-shelf plug load monitors (i.e. Monster Cable 300MC 378 

PowerControl unit) installed at individual desks throughout two floors of an existing and 379 

occupied 6-story office (40,000 ft2) test-bed building in Denver, CO.  In this building, 380 

employees were typically present between 9:00 a.m. and 5:00 p.m. from Monday to Friday.  381 

Workstations most often included computers, monitors, space heaters, and electronics chargers, 382 

and these appliances were connected to the plug load monitor through a power strip.  The 383 

Monster Cable 300MC plug load monitors connected to standard North American 120 V outlets 384 

and communicated information to the included Monster Cable edge-router (GTW 100) that 385 

uploaded data to a database via an Ethernet based internet connection.  Real time power draw 386 

(W) was collected at 20-minute intervals.  More information regarding the Monster Cable  387 

300MC plug load monitoring equipment specifications and test-bed building set-up can be found 388 
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in Gulbinas and Taylor (2014) and on manufacturer’s retail website (“Amazon.com” 2016).  389 

Within the two floors of the building, data was collected for a total of 27 individuals’ 390 

workstations in 5 separate organizations. The physical location of each sensor as well as the 391 

organizational association of each individual was recorded to indicate the spatial and social 392 

attributes associated with each workstation; these attributes are shown in Fig. 4.  The color of the 393 

sensor on the test-bed building floorplan refers to the organizational identity of the occupant 394 

associated with the sensor, with each color representing one organization. 395 

 396 

 397 

Fig. 4. Workstation locations superimposed on building floorplans 398 

We captured power use at 20 minute intervals for each workstation in the study.  Typical 399 

values for power use ranged from 50W to 200W for the workstation, depending on the 400 

appliances plugged into the power strip.  To account for this range in absolute values of power 401 

draw, we normalized each workstation’s power use over the previous 12 hours of data collection, 402 

as described in the Methodology section.  This method allowed for comparisons among 403 

individuals’ relative energy use behavior over the course of a single work day. 404 
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Case Study: Results and Discussion 405 

By applying the OESPG framework to this data, we were able to analyze the variability in 406 

energy use behavior in terms of spatial layout and social network structure across the floor plans 407 

of the building.  Both physical distances and organizational affiliations were used to construct 408 

the adjacency matrix, following eq. (6) above.  Spikes in frequency content for high frequencies 409 

are of interest because they indicate instances of high variability, i.e., points in time in which 410 

individuals are not drawing power as one would expect.  These expectations are embedded in the 411 

graph construction.  We would expect occupants with similar spatial characteristics (i.e., those 412 

sitting close to one another) to have similar energy use patterns, and similarly, we would expect 413 

occupants with similar social characteristics (i.e., those that are part of the same organization) to 414 

have similar energy use patterns.  In general, occupants with similar characteristics have higher 415 

edge weightings between them.  When similar occupants have distinctly different energy use 416 

patterns, their energy use behavior can be considered out-of-sync with expectations.   417 

Using this framework, we can apply a threshold to the higher frequencies.  When the 418 

frequency contents of the higher frequencies cross the threshold, occupant energy use behavior is 419 

deemed out-of-sync.  For the purposes of this case study, we utilize simple heuristics from 420 

previous work (Sandryhaila and Moura 2014) to indicate the high frequencies of interest to be 421 

the half at the top of the spectrum (14-27 in this application) and the frequency content threshold 422 

to be 1 on the y-axis. Using this simple threshold, certain out-of-sync signals can be detected and 423 

analyzed.  Both Fig. 5a and 5b show the frequency plot of each signal over the course of a full 424 

workday in gray, as well as one signal that is detected as out-of-sync. In Fig. 5a, the detected 425 

signal, in red, occurs at 2:40pm, and in Fig. 5b, the detected signal, in blue, occurs at 3:00pm. 426 
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 427 

Fig. 5. Frequency plots for one representative workday, with detected signals: (a) 2:40 p.m.; (b) 428 

3:00 p.m. 429 

In this particular example, two signals are detected, one right after the other.  The first 430 

occurs at 2:40pm on the analyzed workday, and the second occurs at 3:00pm on the analyzed 431 

workday.  Since the signals are captured at 20 minute intervals, this detection could indicate that 432 

40 minutes of the workday are in the out-of-sync condition. The high frequency that caused these 433 

detections is the 24th, as can be seen in Fig. 5a and 5b.  To understand the cause of the out-of-434 

sync condition as detected in this analysis, the eigenvector associated with the 24th eigenvalue—435 

as ordered by the total variation—can be plotted and its components can be analyzed (Fig. 6).  436 

Analyzing this eigenvector provides insight into which nodes are responsible for the signal 437 

detection (Deri and Moura 2015).  The figure shows that nodes 5, 6, 7, and 8—nodes that are 438 

both close to one another and part of the same organization—are most highly expressed in this 439 

24th frequency.  With a relatively high amount of power in this high frequency, it would be 440 

expected that the highly expressed nodes in the corresponding eigenvector would exhibit 441 

incongruous power draw behavior.  In this example, the power values at nodes 5-8 describe a 442 

situation in which power values for nodes 5 and 8 rapidly become small compared to recent 443 
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patterns, while power values for nodes 6 and 7 are near the maximum amount of power drawn 444 

recently.  Specifically, at both detected signals, occupants 6 and 7 are both drawing more than 445 

80% of their individual maximums (as iteratively measured over the previous 12 hours), while 446 

occupants 5 and 8 are both drawing 0% of their individual maximums (as iteratively measured 447 

over the previous 12 hours). This data is summarized in more detail in Table 1. 448 

 449 

Fig. 6. Components ( 'm ) of the eigenvector of the 24th frequency of the plot in Fig. 5 (detected 450 

as out of sync) 451 
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Table 1: Summary of power draw values for out-of-sync signals 452 

Occupant 
Node 

Normalized power draw, 
2:40pm 
(fraction of maximum) 

Normalized power draw, 
3:00pm 
(fraction of maximum) 

Mean normalized power 
draw over full day 
(fraction of maximum) 

5 0 0 0.22 
6 0.87 1.00 0.39 
7 0.87 0.87 0.40 
8 0 0 0.25 

 453 
Energy efficiency recommendation strategy 454 

Using power values as a proxy for occupant behavior, we can draw the conclusion that 455 

the two groups of two individuals are following different schedules, resulting in a situation in 456 

which building energy use for things like lighting and thermal comfort might not be as efficient 457 

as possible.  If a recommendation can be made such that all four occupants follow the same 458 

schedule for the day, the signals that were once detected are no longer detected (Fig. 7).  The 459 

figure shows much lower energy exhibited by the 24th frequency for the same signals that caused 460 

the energy in the 24th frequency to exceed the learned threshold we had set.  By making a 461 

schedule-shifting recommendation for the occupants so that all occupants within a zone of the 462 

building follow the same schedule over the course of a day, we are able to show that the high 463 

frequencies in our framework are sensitive to recommendations that more closely align 464 

individuals who are expected to engage in similar behaviors.   465 
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 466 

Fig. 7. Frequency plot for one workday after schedule recommendations 467 

In this particular example, the power of the framework is in recognizing points in a 468 

workday in which nuanced behavioral dynamics of closely related individuals (by space and 469 

social network) are less aligned than would be expected.  When situations like these are detected, 470 

there exist opportunities to align schedules and take advantage of granular building system 471 

controls.  Distributed and highly controllable building systems will operate most effectively 472 

when complex occupant behavioral dynamics are best understood.  This framework introduces a 473 

methodology for understanding how occupants use a building and how that behavior differs from 474 

our expectations, in terms of spatial and organizational correlations.  Using this understanding to 475 

improve distributed and precise building controls could lead to large potential energy savings.  476 
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One important advantage of the OESPG framework is its scalability.  Very large buildings with 477 

many groups of individuals, many floors, and many occupants can be analyzed quickly after the 478 

initial work of defining adjacencies and determining frequencies through the Fourier analysis.  479 

Signals with relatively high energies in the high frequencies—and the nodes responsible for this 480 

result—can be identified in real time for quick recommendations. 481 

LIMITATIONS AND FUTURE WORK 482 

The main limitations for this initial study of the novel OESPG framework include 483 

parameter fitting and recommendation strategies.  When assigning the edge weightings that 484 

comprise the adjacency matrix, we used typical values to simplify the analysis.  Future work 485 

should consider a methodology for finding the best weighting scheme for both the Gaussian 486 

distance weighting and the organizational weighting.  We also note the potential limitation of 487 

combining the spatial and organizational components of the building’s organizational structure 488 

into one weighting.  While separating these factors would mean sacrificing the ability of the 489 

framework to analyze all three dimensions simultaneously, a focused spatial or social analysis 490 

might provide additional insight.  Additionally, there is potential for future work to investigate 491 

the threshold that is applied to the higher frequencies in order to determine the out-of-sync 492 

condition.  While our method is consistent with heuristics from previous work in DSPG, further 493 

understanding of appropriate thresholding for the domain specific area of occupant analysis 494 

could further improve the efficacy of occupant analysis frameworks like OESPG. 495 

One other area of future work could involve improving the signal input vector by 496 

constructing a composite signal based on numerous other data sources in addition to plug load 497 

monitors.  Other data collection devices, such as occupancy sensors, could add information 498 

beyond what is available from collecting only energy consumption data.  While these data 499 
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streams could provide additional information valuable in the analysis of occupant dynamics, they 500 

may introduce additional uncertainties and challenges in regards to scalability, reliability and 501 

fusion of disparate data streams.  Therefore, we leave the development of such a composite 502 

signal for future work. 503 

There is also potential for future work that considers how best to make recommendations 504 

for occupant schedule and spatial shifts in order to both reduce high frequency energy and to 505 

ultimately improve building energy performance.  This work could include algorithms for 506 

building systems, building management practices, and occupant feedback tools.  Robust 507 

recommendation strategies would create a link between the identification of potentially 508 

problematic occupant behavior (what our framework accomplishes) and better building energy 509 

performance.  Future studies might also consider a scope beyond that of energy use in a single 510 

building envelope.  As more districts and cities begin collecting live energy use for buildings, the 511 

inherent scalability of the OESPG framework allows for a much larger scale of analysis.  An 512 

additional flexibility of the framework is that its signal need not be limited to power or energy.  513 

Future work might look at other sustainability indicators, such as pedestrian or automobile traffic 514 

flows.  515 

One exciting potential area of research that builds off this framework is the inverse 516 

problem considered in this paper.  That is, given the spatial layout of occupants and a dataset 517 

describing their energy use behavior, could the inherent social structure of the building be 518 

inferred by minimizing the energy in the high frequencies of the signals’ frequency plots over 519 

time?  Such an analysis would provide valuable insight into how social networks form within a 520 

building given organizational identity, spatial configuration, and energy use.  This insight would 521 
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be valuable for the design of new buildings that aim to maximize occupant interaction and 522 

minimize energy usage. 523 

CONCLUSIONS 524 

The primary purpose of this paper was to introduce and test the OESPG framework, a data 525 

framework grounded in the emerging area of signal processing on graphs and capable of 526 

analyzing occupant behavior in three core dimensions: spatial, temporal, and social.  Extending 527 

previous data-driven occupant based analysis frameworks (Azar and Menassa 2015; Gulbinas et 528 

al. 2015), a major contribution of the OESPG framework is its ability to simultaneously analyze 529 

data across the three key dimensions of occupant energy use within a commercial building. By 530 

using the physical locations and organizational or team identity of individuals and their 531 

workstations, we define a graph with edges between nodes that are weighted based on these 532 

spatial and social dimensions.  Using power draw signals from the occupant workstations, the 533 

OESPG framework analyzes the variability of the signal across the constructed graph, identifying 534 

in real time situations in which occupants behave differently from other occupants closely related 535 

by space and social structure.   These incongruities are detected as spikes in the high frequencies 536 

of the frequency plot, which indicate high variability across one or more dimensions.  In both a 537 

simulated and real case study example, we demonstrate how our OESPG framework can be 538 

utilized to provide insight into which occupants are responsible for this high variability across 539 

the graph, and, using this information, can yield simple recommendations to more closely align 540 

individuals and enable more energy efficient operations of building systems. 541 

In addition to addressing the multi-dimensionality problem associated with commercial 542 

building energy data, the OESPG framework was designed to be scalable to very large buildings 543 

with thousands of occupants.  The underlying graph structure and computational efficiency of the 544 



 30 

single eigendecomposition lends itself efficient to the real time analysis of large commercial 545 

buildings with thousands of occupants and even multiple buildings.  As a result, the proposed 546 

OESPG framework is a building block for more efficient data-driven management of building 547 

systems, better recommendations for occupant behavior, and even better design of building 548 

layouts for improved energy efficiency. 549 

By utilizing new energy use data streams, a deeper understanding of the complexity of 550 

interactions among the various dimensions of occupant energy use in buildings has the potential 551 

to yield significant energy savings in commercial buildings and enhance occupant comfort of 552 

spaces.  Given the large role of buildings in the energy use landscape, data-driven efficiency 553 

strategies for commercial buildings will prove to be invaluable in addressing modern day 554 

environmental crises and meeting our sustainability goals. 555 
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APPENDIX: EMPIRICAL PLUG LOAD DATA AND OCCUPANT BEHAVIOR 561 

This Appendix validates the notion that variations in typical office behaviors can have a 562 

substantial impact on metered plug load power draw.  We utilized a HOBO Onset plug load 563 

logger to capture power draw at 20-minute intervals (the same interval as the plug load monitor 564 

used in this study) for a typical office set up, including a laptop charger, monitor, and coffee 565 

maker.  Notes were kept during the 24-hour data collection period, to understand how recorded 566 

behavior correlated with power draw variations. Fig A-1 summarizes the findings.  It clearly 567 
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indicates how activities such as leaving the desk for a meeting or class can lead to highly 568 

noticeable changes in power draw at the workstation. The OESPG framework introduced in this 569 

manuscript leverages these changes in its analysis. 570 

 571 

Fig. 8. Empirical plug load power data  572 
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