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ABSTRACT 
When building systems and occupants use energy, they create data — much of it 
unstructured and characterized as long running time series.  Energy data captured at the 
plug level offers an opportunity not only to analyze highly granular building activities, 
but also to infer information about the behavior of occupants.  Previous work examining 
occupant behavior typically seeks to understand how individual occupant schedules can 
be better modeled to improve the efficiency of building system operations, and therefore 
they treat individual actions as entirely self-contained.  However, individual behavior — 
including that which draws power in buildings — is highly influenced by the inherent 
spatial and social network structures of occupants. Therefore, understanding the 
underlying spatio-social occupant network in a commercial building is integral to driving 
more energy efficient operations.  Doing so is challenging since network relationships are 
highly complex and difficult to directly measure using traditional methods (e.g. surveys) 
and will require a deep understanding of occupant behavioral patterns.  In this paper, we 
propose an automated methodology for inferring occupant behavioral patterns by 
classifying raw plug load data ascribed to individual occupants into energy use states.  
Our method utilizes a Gaussian Mixture Model to model occupant energy use variability 
and probabilistically classify energy use data into one of three generalized states.  We 
present preliminary results of our classification algorithm using empirical data from a 
fifty-person commercial office building in San Francisco, California. 
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INTRODUCTION 
Commercial buildings are responsible for about 20% of total US energy consumption, 
much of which is driven by human behavior.  Occupants drive the use of systems that 
consume energy in buildings, from heating and ventilation to miscellaneous plug loads.  
Building systems are often designed with energy efficiency in mind, yet system efficiency 
optimizations typically occur with rudimentary information about occupant activity in the 
space, such as generalized occupancy schedules.  Truly integrated building design and 
management would respond dynamically to occupant behavior.  Occupant dynamics 
within buildings are highly complex, however, and fully understanding them requires 
reconciling spatial, temporal, and social dimensions of behavior.  The complex challenge 
of understanding occupancy while improving building design and management warrants 
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working toward a more robust understanding of occupant energy use dynamics in 
buildings. 

Occupants and their plug loads create data that can be analyzed to better understand 
relationships — both among the occupants themselves, and between occupants and 
building systems.  One useful tool in understanding such relationships is the graph, or 
network, defined as a set of nodes and edges.  Considering occupants as nodes in a 
complex network offers a unique vantage point for discerning occupants’ energy use 
relationships. We define energy use relationships as the similarities and dissimilarities of 
behaviors that directly influence energy consumption in a building (Chen et al. 2012; 
Gulbinas and Taylor 2014).  Graphs of occupants — which describe the characteristics 
of each node as well as the relationships between pairs of occupants — have been shown 
to be useful in analyzing the complex dimensions of occupant energy use (Sonta et al. 
2017). 

Building an energy use relationship network of occupants in a building requires either 
a precise mathematical definition of how relationships form within a building, or granular 
measurements of the complex occupant activities that drive energy use in a building.  
With devices like plug load sensors, granular measurements are becoming increasingly 
available, yet the data can be highly unstructured.  In this paper, we present a 
methodology for analyzing temporally and spatially granular plug load data to 
characterize the states of occupants’ energy use behavior.  Ultimately, such an analysis 
will be useful in characterizing relationships of occupants and inferring a spatio-social 
network of building occupant relationships. 

RELATED WORK 
Data-driven energy efficiency in buildings 
Many studies have noted the importance of occupant behavior in affecting building 
energy performance.  Previous work looking at commercial buildings has found that total 
energy use can be expressed as a combination of a baseline amount of energy 
consumption and a human-driven amount of energy consumption (Taherian et al. 2010).  
This human element is difficult to characterize, but recent research has highlighted three 
key dimensions of occupant dynamics in buildings: spatial, temporal, and social 
(Anderson et al. 2014; Gulbinas et al. 2015; Gulbinas and Taylor 2014).  Recent research 
in addressing one or more dimension has utilized agent-based modeling combined with 
whole-building simulation tools (Azar and Menassa 2012); tools for improving control 
of building zones (Jazizadeh et al. 2014), as well as predicting occupant energy use to 
identify recurring patterns (Khosrowpour et al. 2016); and analysis of the relationship 
between network dynamics and the effectiveness of eco-feedback tools (Anderson and 
Lee 2016; Gulbinas et al. 2014; Siero et al. 1996). 

Such analysis has much merit in advancing our understanding of the relationship 
between the human element and building systems, but it also underscores the importance 
of using data-driven methods to make important connections between occupant behavior 
and building energy use.  Recent data-driven work has found that spatially granular 
occupancy sensors can yield significant energy savings (Agarwal et al. 2010).  Further, 
recent work has found that sensors and their data streams can be useful in detecting 
activities within buildings (Milenkovic and Amft 2013). 
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Network theory in the built environment 
One useful tool for representing granular data streams generated by many interconnected 
nodes is a graph, or network of nodes.  Analysis of networks in the built environment has 
led researchers to determine that relationships between occupants highly impact energy 
consumption decision making and the usefulness of eco-feedback tools (Chen et al. 2012; 
Gulbinas et al. 2014; Khashe et al. 2016).  Additionally, network models have been found 
to be useful in detecting situations in which occupant energy use is unexpected, based on 
the structure of the nodes and edges in the model (Sonta et al. 2017).  This area of research 
has noted the importance of the edge weightings in these models (Chen et al. 2012), yet 
there has been little research that works toward understanding how graphs in the built 
environment can be constructed using granular and high-fidelity data. 

Constructing a network of occupants in a building — and determining the edge 
weightings between nodes that describe their energy use relationship — requires a 
granular understanding of the occupant activity within the building. Within a building, 
information about occupants can be collected in the form of energy consumption at the 
desk level.  This data can be used to abstract information about the occupants, such as the 
type of activities they are likely to be performing in an office building (Milenkovic and 
Amft 2013).  For the purposes of building a graph of occupants, determining occupants’ 
energy use states from granular plug load data will ultimately enable the inference of a 
graph of occupants that is built solely on plug load energy use data.  

METHODOLOGY 
In this section, we describe our methodology for classifying granular plug load data for 
each occupant into energy use states.  We define energy use states as ranges of energy 
use for each occupant that describe one of three situations:  

1) “off” — an occupant does not have their office equipment on and is not at his or 
her desk 

2) “away” — an occupant’s office equipment is on but not actively drawing power 
(e.g., equipment is “asleep”) 

3) “online” — an occupant’s office equipment is on and actively drawing power 
 
In the following subsections, we describe (1) the dataset, (2) the data cleansing process, 
(3) our classification algorithm, and (4) the role of classification in further analysis. 
 
Data collection and cleansing 
We collected plug load energy use data from the SF Department of the Environment 
office in central San Francisco. Energy use data was recorded using Enmetric power 
strips, which report the energy consumption in watt-hours over fifteen minute intervals. 
Our data reports the energy consumption for 52 occupants over fifteen minute intervals 
for the entire year 2015.  Figure 1 shows a histogram of energy use values for a single 
occupant over the course of a full year.  It is clear from this figure that this occupant’s 
energy use can be roughly classified into one of two states, described by peaks in the 
histogram: one corresponding to a very low amount of energy use, and one corresponding 
to a range of higher energy use values. 
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Figure 1: Histogram of a single occupant's energy use readings over one year 

 
We define a “clean” energy time-step to be an interval in which the fifteen-minute 

energy use in watt-hours is recorded for all occupants. An accurate recording for every 
occupant in the network is necessary to ensure the accurate inference of relationships 
between occupants in the network.  When an Enmetric power strip loses connectivity, it 
continues to record energy-use data and reports the cumulative energy-use over the period 
of lost connectivity in the time-step when connectivity is restored. This results in 
erroneously high readings for that time step. To avoid erroneous measurements in the 
analyzed data, we restricted our analysis to those occupants whose plug load monitors 
had strong connections throughout the period of study.   

We also restricted our analysis to a period of 41 days with a single lost-connectivity 
event and otherwise clean data. The lost-connectivity event spanned three, fifteen minute 
intervals and occurred for every occupant outlet. We interpolated energy use in the 
missing time steps by assuming an equal distribution of the cumulative energy use across 
the missing time steps. 
 
Energy state classification  
Through exploration and visualization of the clean data we observed how energy use for 
individual occupants “jumped” between energy-use magnitudes at different points 
throughout a day.  We hypothesize these sudden transitions in energy use represent 
important changes in occupant behavior.  The observation that energy use for most 
occupants fluctuated between one of three energy use states motived the use of a 
classification algorithm that could classify each occupant’s energy use values into one of 
three states (Figure 2).  
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Figure 2: Energy use readings for a single occupant over one work week, with annotations of 

possible energy use states (green – “online”, yellow – “away”, red – “off”). 

Our methodology captures these important shifts in occupant energy states. Figure 3 
describes our overall clustering algorithm. To account for possible shifts in individual 
occupants’ baseline energy use (such as shifts due to different configuration of desktop 
appliances), we classify the data into energy use states separately for each day.  We 
classified energy use data points into one of three energy states (“online”, “away”, “off”) 
by applying a two-step classification algorithm to each day of data for all 49 occupants 
in the “clean” dataset.  For every occupant, we extracted 41 day-vectors each containing 
96 indices representing energy consumption values.  

 

 
Figure 3: Classification algorithm flow diagram 
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Following previous work on time series heart rate data that used a Gaussian Mixture 
Model (GMM) to model heart rate variability (Costa et al. 2012), we use a GMM to model 
energy use variability.  Our GMM was used to classify the daily time series energy use 
values for each occupant. For each vector of daily energy use values, we first classified 
each 15-minute energy consumption value in as either “off” or “on” using a 2-component 
GMM clustering algorithm. The “on” data was then extracted and further classified as 
either “online” or “away” using a 2-component GMM based on our hypothesis the 
observed changes in energy use stem from the presence or absence of an occupant 
performing an energy intensive task. 

RESULTS 
Classifying the raw data into energy states allows us to construct interpretable energy use 
models which capture significant changes in energy consumption for each occupant 
power strips.  Figure 4 shows an example of the transformation from raw occupant energy 
data to an energy state model for one day’s worth of data for one occupant.  

 
Figure 4: a) raw energy readings, and b) classified energy use states for single occupant over 

one day 

We constructed an energy-state model for every occupant for every day of our 
analysis.  Our classification methodology allows us to compare energy use states for each 
individual in the analysis.  Such comparisons can lead to insights about behavioral 
correlations between individuals in the building.  Figure 5 shows heat maps of both the 
raw energy use data and the classified energy use states for each occupant in our study 
over the course of one day.  This figure illustrates interesting behavioral correlations that 
are not easily recognized with the raw data.  For example, the data points indicated by the 
blue circles (occupants 41-49 in the middle of the day), show that the classification 
algorithm allows us to determine when certain individuals are at the same energy use state 
at the same time.  In this cause, each member of the cluster of occupants is in the “away” 
state, possibly indicating that they all took a break at the same time.  In a complete 
network, this would indicate that these occupants are more likely to have significant 
energy use relationships.  One possible opportunity from this analysis — to improve the 
design and management of the space — is to ensure that occupants with similar behavioral 
patterns are sitting in the same lighting or HVAC zone within the building. 
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Figure 5: Heat map of occupants’ a) raw energy readings, and b) classified energy use states  

CONCLUSIONS & FUTURE WORK 
The purpose of this study was to propose and test a classification algorithm that takes as 
an input raw, granular data describing occupants’ energy use behavior at their desks, and 
abstracts out useful information about their state of energy use.  Our work contributes to 
the literature by extending the use of Gaussian Mixture Models (GMM) to high-resolution 
energy usage data.  Future work aims to validate our algorithm by conducting controlled 
experiments and collecting annotated plug-load data.   

Additionally, our proposed classification method will be useful in future work that 
considers the problem of discerning energy use relationships among occupants in a 
building, because it allows for comparison of states of energy use between difference 
occupants, rather than comparison of the raw values themselves.  In determining energy 
use relationships among occupants, it is their relative behavior that matters most.  
Understanding the complex dynamics of occupancy and occupant-driven energy use in 
buildings will ultimately help us make smarter decisions about how we design and 
manage our buildings. 

ACKNOWLEDGEMENTS 
The authors would like to the San Francisco Department of the Environment for their 
help in facilitating the gathering and sharing of the plug load data utilized in this study. 
The material presented is based in part upon work supported by Stanford Graduate 
Fellowship, Center for Integrated Facility Engineering and the US National Science 
Foundation under Grant No. 1461549. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science Foundation. 

REFERENCES 
Agarwal, Y., Balaji, B., Gupta, R., Lyles, J., Wei, M., and Weng, T. (2010). “Occupancy-

driven energy management for smart building automation.” Proceedings of the 2nd 
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building - 
BuildSys ’10, ACM Press, New York, New York, USA, 1. 



 8 

Anderson, K., and Lee, S. (2016). “An empirically grounded model for simulating 
normative energy use feedback interventions.” Applied Energy, Elsevier Ltd, 173, 
272–282. 

Anderson, K., Lee, S., and Menassa, C. (2014). “Impact of Social Network Type and 
Structure on Modeling Normative Energy Use Behavior Interventions.” Journal of 
Computing in Civil Engineering, American Society of Civil Engineers, 28(1), 30–
39. 

Azar, E., and Menassa, C. C. (2012). “Agent-Based Modeling of Occupants and Their 
Impact on Energy Use in Commercial Buildings.” Journal of Computing in Civil 
Engineering, 26(4), 506–518. 

Chen, J., Taylor, J. E., and Wei, H. H. (2012). “Modeling building occupant network 
energy consumption decision-making: The interplay between network structure and 
conservation.” Energy and Buildings, 47, 515–524. 

Costa, T. et. al. (2012). “Gaussian Mixture Model of Heart Rate Variability.” PLoS ONE, 
(J. Bourdon, ed.), Public Library of Science, 7(5), e37731. 

Gulbinas, R., Jain, R. K., and Taylor, J. E. (2014). “BizWatts: A modular socio-technical 
energy management system for empowering commercial building occupants to 
conserve energy.” Applied Energy, 136, 1076–1084. 

Gulbinas, R., Khosrowpour, A., and Taylor, J. (2015). “Segmentation and Classification 
of Commercial Building Occupants by Energy-Use Efficiency and Predictability.” 
IEEE Transactions on Smart Grid, 6(3), 1414–1424. 

Gulbinas, R., and Taylor, J. E. (2014). “Effects of real-time eco-feedback and 
organizational network dynamics on energy efficient behavior in commercial 
buildings.” Energy and Buildings, 84, 493–500. 

Jazizadeh, F., Ghahramani, A., Becerik-Gerber, B., Kichkaylo, T., and Orosz, M. (2014). 
“User-led decentralized thermal comfort driven HVAC operations for improved 
efficiency in office buildings.” Energy and Buildings, 70, 398–410. 

Khashe, S., Heydarian, A., Becerik-Gerber, B., and Wood, W. (2016). “Exploring the 
effectiveness of social messages on promoting energy conservation behavior in 
buildings.” Building and Environment, 102, 83–94. 

Khosrowpour, A., Gulbinas, R., and Taylor, J. E. (2016). “Occupant Workstation Level 
Energy-use Prediction in Commercial Buildings: Developing and Assessing a New 
Method to Enable Targeted Energy Efficiency Programs.” Energy and Buildings. 

Milenkovic, M., and Amft, O. (2013). “An opportunistic activity-sensing approach to 
save energy in office buildings.” Proceedings of the the fourth international 
conference on Future energy systems - e-Energy ’13, 247. 

Siero, F. W., Bakker, A. B., Dekker, G. B., and Van Den Burg, M. T. C. (1996). 
“Changing Organizational Energy Consumption Behaviour Through Comparative 
Feedback.” Journal of Environmental Psychology, Academic Press, 16(3), 235–246. 

Sonta, A. J., Jain, R. K., Gulbinas, R., Moura, J. M. F., and Taylor, J. E. (2017). “OESPG: 
A Computational Framework for Multidimensional Analysis of Occupant Energy 
Use Data in Commercial Buildings.” Journal of Computing in Civil Engineering (in 
press). 

Taherian, S., Pias, M., Coulouris, G., and Crowcroft, J. (2010). “Profiling energy use in 
households and office spaces.” Proceedings of the 1st International Conference on 
Energy-Efficient Computing and Networking, ACM, 21–30. 


