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Buildings are our homes and our workplaces. They directly affect our well-being, and they 7 

impact the natural global environment primarily through the energy they consume. 8 

Understanding the behavior of occupants in buildings has vital implications for improving the 9 

energy efficiency of building systems and for providing knowledge to designers about how 10 

occupants will utilize the spaces they create. However, current methods for inferring building 11 

occupant activity patterns are limited in two primary areas: First, they lack adaptability to new 12 

spaces and scalability to larger spaces due to the time and cost intensity of collecting ground 13 

truth data for training the embedded algorithms. Second, they do not incorporate explicit 14 

knowledge about occupant dynamics in their implementation, limiting their ability to uncover 15 

deep insights about activity patterns in the data. In this paper, we develop a methodology for 16 

classifying occupant activity patterns from plug load sensor data at the desk level. Our method 17 

makes us of a common unsupervised learning algorithm—the Gaussian mixture model—and, in 18 

addition, it incorporates explicit knowledge about occupant presence and absence in order to 19 

preserve adaptability and effectiveness. We validate our method using a pilot study in an 20 

academic office building and demonstrate its potential for scalability through a case study of an 21 

open-office building in San Francisco, CA. Our method offers key insights into spatially and 22 

temporally granular occupancy states and space utilization that could not otherwise be obtained. 23 

Keywords: Building energy; Data-driven; Gaussian mixture model; Knowledge-based; Occupant 24 

activities; Occupant dynamics; Space utilization; Zero-training  25 

1. INTRODUCTION 26 

Buildings are integral to our daily lives. People spend an estimated 87% of their time indoors [1], 27 

and researchers have shown that buildings directly affect our well-being [2]. Moreover, buildings 28 

worldwide account for over 19% of energy-related CO2 emissions and 51% of global energy 29 

consumption [3], making them an integral part of our sustainable energy future. Fundamentally, 30 

buildings consume this energy to provide their occupants with services, including thermal and 31 

visual comfort, access to water, and power for electronic devices. As a result, understanding the 32 

relationship between buildings and their occupants is central to designing buildings that enhance 33 

occupant well-being, improve service delivery, and reduce energy usage.  34 

 We define occupant dynamics as the complex interactions between buildings and 35 

humans, encompassing occupant presence, occupant behavior (i.e., the specific actions that 36 
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occupants take in buildings, such as working at a workstation, taking a break, or even interacting 37 

with lighting or heating, ventilation, and air conditioning (HVAC) controls), occupant activity 38 

states (i.e., abstracted and categorized information about occupant behavior), and the impact 39 

occupant behavior has on building operations. These dynamics are challenging to understand due 40 

to the increasing complexity of our building systems and the socio-technical complexities of 41 

occupant behavior. Even gaining a clear picture of the spatial and temporal activity patterns of 42 

occupants within a building is a non-trivial task [4]. While new types of sensors have facilitated 43 

more data-driven approaches to understanding occupant-building dynamics, they suffer from a 44 

few key limitations. Sensors designed to directly detect occupancy often mischaracterize the 45 

spaces they are sensing due to the complexity associated with various building spaces [5]. New 46 

statistical and data mining techniques that have been proposed to infer occupancy patterns from 47 

emerging high-fidelity data streams such as light levels [6], energy use [7], sound [8], and video 48 

[9] typically require a significant amount of ground truth training data that is cumbersome and 49 

often cost prohibitive to collect, thereby limiting their applicability and feasibility at scales 50 

beyond small pilot studies. Conversely, knowledge-based approaches to understanding occupant 51 

dynamics in buildings (e.g., surveys, on-site engineering audits) can yield insights on occupant 52 

dynamics [10,11] but suffer from common reliability and scalability issues associated with 53 

indirect collection instruments [12].  54 

 In various aspects of building design, construction, and management involving human 55 

activity, researchers have shown that combining expert knowledge about buildings with 56 

automated computing techniques can vastly improve the effectiveness of the embedded methods. 57 

In the context of augmented reality within buildings, researchers have shown that integrating 58 

explicit engineering knowledge about building layout and operator movement into the automated 59 

augmented reality framework can improve the accuracy of the overall system [13].  In 60 

construction management, the process of extracting meaningful information about the activities 61 

of construction workers from raw cellphone data can be enhanced by incorporating explicit 62 

engineering knowledge about the necessary levels of detail required for improving the 63 

effectiveness of construction activity simulations [14]. These studies and others like them 64 

emphasize the point that automated methods can be made more accurate and effective by 65 

integrating knowledge about the specific domain in the design of the overall methodology. 66 
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 In this paper, we present a new methodology that integrates knowledge-based and data-67 

driven approaches to understanding occupant activities in buildings with the goal of informing 68 

enhanced building design and energy efficient operations. Our method infers activity states for 69 

individual occupants using time-series data from low-cost, off-the-shelf plug load sensors. It 70 

incorporates explicit domain knowledge about how occupant activities impact plug load data into 71 

a common unsupervised learning algorithm—the Gaussian mixture model—to characterize the 72 

data into abstracted levels of activity. We design our method to be able to automatically analyze 73 

the highly variable data associated with occupant presence separately from the less variable data 74 

associated with occupant absence. This design decision in our method allows it to more deeply 75 

characterize the data while maintaining adaptability to new spaces, potential for scalability to 76 

larger spaces, and high accuracy. We validate and demonstrate that our method is able to 77 

determine individual occupancy states with a high-level of accuracy on a small control study, 78 

and we demonstrate the merits and applicability of our approach on a case study of a real 47-79 

person open office in San Francisco, CA, USA.  80 

2. BACKGROUND 81 

Building designers and managers are increasingly utilizing sensors and the data they collect to 82 

make decisions about how buildings are designed, built, and operated [15]. These sensors 83 

measure properties such as air temperature and humidity, lighting levels, sound, movement, and 84 

plug load energy use [16–20]. Each of these types of sensors produces time-series data that 85 

provides information about the changing state of the building. In many cases, data produced 86 

within a building can be utilized to make decisions that can improve the energy efficiency of that 87 

building: for example, a lighting sensor may provide feedback to lighting controls that can dim 88 

the overhead lighting if the building is receiving enough light from outdoors. In others, data can 89 

be used to understand characteristics of existing buildings so that the design of future buildings 90 

can be improved: for example, data describing existing building occupancy can be linked with 91 

predictive energy models to increase the accuracy of energy models [21]. 92 

This explosion of data has created an opportunity to provide new knowledge to engineers, 93 

designers, and building managers. In particular, previously unavailable information about the 94 

state of occupancy in buildings—the presence or absence of occupants as well as their 95 

activities—can be useful both for efficient building control of existing buildings and for 96 
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improved space planning of future buildings [22]. Along with other data streams specific to each 97 

building system, the detection of occupant activities has been shown to be significant in 98 

addressing all forms of energy use in buildings, from lighting control [23–25] to HVAC control 99 

[26,27]. In addition, as knowledge about space use becomes more widely available to designers, 100 

the integration of design heuristics with occupancy models will be integral to designing spaces 101 

that better suit the needs of occupants [28]. In this section, we discuss the state of data-driven 102 

decision making in buildings for energy efficient building operations and improved building 103 

design, as well as the importance of occupancy and the state of the art for detecting occupant 104 

presence and occupant behavior in buildings. We elucidate the need for a robust, adaptable 105 

method for determining the activity states of occupants in buildings. 106 

2.1. Data-driven & occupant-driven energy efficiency 107 

Over recent years, the analysis of building energy data with statistical and data mining 108 

techniques has been shown to be helpful in improving energy efficient management of building 109 

systems. Within buildings, researchers have worked toward achieving a condition in which 110 

building systems—such as lighting, heating, and cooling—are provided only as much as they are 111 

needed, and only where and when they are needed.  Matching these building systems with 112 

occupancy information has been shown to lead to significant energy savings [17,18].  Recently in 113 

commercial buildings, energy use data collected through power strips installed at the individual 114 

outlet level have been used for multiple approaches to save energy in buildings: to show that 115 

energy is wasted due to inefficient occupant behavior, such as leaving lights or other systems on 116 

during non-occupied hours [29]; to calibrate and improve the accuracy of building energy 117 

models in conjunction with other building data sources [30]; and to describe the behavior of 118 

occupants and improve schedule modeling in buildings [31]. 119 

 Many studies have noted the high impact occupant presence and behavior has on building 120 

energy use [32–34]. Jia et al. [35] has noted that occupant behavior (as distinct from occupancy) 121 

relates to more than just the presence or absence of occupants in buildings—that is, the activities 122 

of occupants within the building have a large impact on building energy performance. However, 123 

this human element, which is responsible for much of building energy use, is often difficult to 124 

characterize. One reason is because it is multidimensional, requiring a fundamental 125 

understanding of spatial, temporal, and social dimensions of occupant behavior [36]. 126 
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Understanding each of these dimensions and reconciling their effects on occupant behavior is 127 

critical to gaining a broad understanding of occupant behavior and its impact on building energy 128 

use. Furthermore, the structure and type of the social network of occupants has been shown to be 129 

highly influential when it comes to how occupants behave and adapt to information in buildings 130 

[37,38].  Researchers have shown that providing the right information to occupants can lead to 131 

changes in behavior that reduce buildings’ energy consumption [39–43].  Due to the energy-132 

consumption impact, complexity, and ever-changing nature of occupant dynamics in buildings, 133 

there remains a pressing need to better understand them. 134 

2.2. Occupancy data & space utilization 135 

While whole-building data and occupancy data have typically been studied in the context of 136 

energy efficient management of existing buildings, they also have the potential to be 137 

tremendously useful in providing knowledge to designers in the early stages of building design. 138 

Previous research has utilized model-based optimization in the design of buildings [44], and 139 

more specifically, in the planning of space layouts in buildings [45–47]. Recent work has 140 

conceptualized models that utilize computing in the assessment of the functional properties of 141 

designed spaces [48]. Specifically, analyzing designs for their ability to perform their function—142 

for example, the ability for a proposed office space to promote a productive work environment—143 

depends on knowledge from empirically based methods (e.g., surveys) [49]. 144 

Architects have traditionally used personal perceptions of how occupants will use the 145 

spaces they design in their planning process. Formalized integration of human-centered 146 

knowledge into the building design process has previously been focused on perceptions of space 147 

[50] and heuristics for improved layouts [51], among others. More recent work has underscored 148 

the notion that it is difficult to quantify and optimize the function of spaces due to a lack of 149 

information about how occupants utilize spaces designed for them. Dzeng et al. [46] found that 150 

function space assignment optimizations that are based on user activities can increase the 151 

prescribed function objectives significantly (e.g., improving overall space use by optimizing 152 

prescribed building assignments in a remodeling effort). However, these methods typically use 153 

occupant activity simulation models that are built on occupant activity data obtained through 154 

onerous methods such as defining heuristics from previous spaces and predetermined schedules 155 

[46] or from specialized occupant movement sensors [52]. With the potential to accurately and 156 
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granularly detect occupant activities in existing buildings from more ubiquitous sensors, new 157 

design-knowledge integration approaches will have greater opportunity to incorporate 158 

empirically grounded occupant activity patterns into new design heuristics.  159 

As engineers and designers continue developing tools to aid in the design of buildings 160 

that more appropriately meet the needs of their occupants, analysis of the utilization of spaces 161 

has become increasingly important. Space-use analysis helps designers determine how 162 

appropriately the spaces within a building are serving their occupants. Spaces that are properly 163 

utilized fulfill their design intentions by having a certain level of occupancy at predetermined 164 

times and by not inhibiting occupants from performing predetermined activities. Spaces that are 165 

not properly utilized can either be underutilized (in which case they are inefficient in their use of 166 

space), or they can be too crowded (in which case they inhibit occupants from performing the 167 

activities they were meant to be able to perform), with proper utilization rates depending on the 168 

nature of the space being analyzed [53,54]. Recently, researchers have proposed frameworks that 169 

can be helpful for architects working on space-utilization in the programming phase of their 170 

design process, but those frameworks depend on a detailed understanding of how occupants use 171 

the spaces designed for them [54]. There remains significant opportunity to analyze the activities 172 

of occupants in existing spaces for greater understanding of occupant dynamics in planned 173 

spaces [55]. Furthermore, carefully representing the information gained from these analyses can 174 

provide useful knowledge to key decision-makers such as building designers or managers [56]. 175 

 Further improvement of the accuracy of models that help designers understand how 176 

occupants will use the spaces they plan depends on a solid understanding of how occupants 177 

utilize spaces in existing buildings. Only by monitoring and understanding the dynamics of 178 

occupant dynamics in existing buildings can we hope to imagine how occupants will behave in 179 

the new buildings we design [57]. 180 

2.3. Detecting occupant presence and activities in buildings 181 

Because occupant behavior is so important to the energy use and space-use planning of 182 

buildings, there is a need for better tools to detect, model, and understand levels of occupancy 183 

and the activities of occupants. Melfi et al. [58] discusses the need for understanding occupancy 184 

at a high level of granularity in terms of temporal resolution, spatial resolution, and resolution of 185 

occupancy (activities versus presence/absence). Specifically, as the level of resolution increases, 186 
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more information can be gained from the sensors, elucidating the need for sensors that can 187 

determine the activities of occupants at the spatial resolution of individual workstations and the 188 

temporal resolution of minutes. 189 

Recent work has utilized sensors or combinations of sensors—including infrared [59], 190 

video [60], and acoustic [61]—to estimate the occupancy of rooms in buildings. These studies 191 

have shown that intelligently controlling systems such as lighting through use of occupancy 192 

sensors can save significant amounts of energy in buildings. Other recent work has used 193 

computer vision algorithms to characterize the movement of occupants in building spaces, noting 194 

that understanding the activities of building occupants leads toward a better understanding of 195 

how spaces can be designed for improved spatial efficiency (i.e., more properly utilized spaces) 196 

and better user experiences [57,62]. 197 

 More recent work has utilized plug load energy data collected at the desk level as an 198 

additional input for algorithms that estimate the true occupancy levels of buildings [63–65]. Zhao 199 

et al. [31] has shown that plug load data of computers and task lights at the desk level can be 200 

utilized to determine occupants’ activities rather than just the level of occupancy. Due to the fact 201 

that plug load sensors are relatively inexpensive and often already installed in commercial office 202 

buildings for investigations into plug load management [66], they can be considered a low-cost 203 

alternative to sensors designed specifically for occupancy detection, such as infrared sensors. 204 

Moreover, many sensors that are designed specifically for occupant presence detection—such as 205 

infrared, acoustic, and CO2 sensors—require large time lags up to 60 minutes for high accuracy, 206 

while plug load sensors have been shown to be useful in determining occupant presence at time 207 

scales on the order of 5-15 minutes [33,38]. 208 

The analysis of plug load data for the detection of occupant activities typically involves 209 

data mining techniques and classification algorithms such as decision trees [63,64] and hidden 210 

Markov models [65]. These classification techniques are used to map the collected plug load 211 

energy use data to levels of occupancy, or in more sophisticated algorithms, to the types of 212 

activities occupants perform in buildings, such as working at a workstation. This recent work 213 

using plug load sensors has high value in advancing our methodologies for determining occupant 214 

activities, however, it requires training the classification models on ground truth data that is often 215 

onerous and cost-prohibitive to collect. While such previous work demonstrates how energy use 216 

data can be utilized to gain an understanding of occupant activities, it is limited in its ability to 217 
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naturally adapt to quick changes in the appliances used at the desk or to additional workers in the 218 

space. Scaling to large buildings with many individuals would require large, coordinated efforts 219 

to collect ground truth data for training individual models. As a result, it is necessary to have a 220 

method that is robust and that can easily adapt to individual consumption patterns in order to 221 

glean a deeper understanding of occupant dynamics within a building. For this reason, this paper 222 

aims to contribute an effective methodology for detecting individual occupant activity patterns 223 

across a building. By combining knowledge-based and data-driven approaches, we are able to 224 

uncover occupant activity patterns from plug load energy use data and utilize such insights to 225 

inform energy efficient operational and space utilization strategies in a commercial building.  226 

3. METHODOLOGY 227 

Our occupant activity state classification method maps occupants’ energy use, collected 228 

through plug load energy use sensors over a 5-20-minute period, to activity states. Based on 229 

major ideas from Section 2, our method is designed with a few key motivations in mind. The 230 

method should be able to adapt to different situations, such as when occupants in different 231 

buildings or floorplans tend to have different types of appliances at their workstations. For 232 

design of the algorithm, this adaptability would mean that parameters would not need to be tuned 233 

and set before the method is applied. In addition, the method should not require the use of 234 

training data in order to infer activity states, as we believe that a cost-effective and adaptable 235 

method should be able to be applied to new situations (such as new buildings or floorplans) 236 

without requiring onerous data collection procedures. In order to accomplish these tasks, our 237 

method is designed to combine a common unsupervised learning approach—the Gaussian 238 

mixture model—with explicit engineering knowledge about the typical structure of plug load 239 

energy signatures. 240 

Various algorithms have been applied to time-series data—like that captured through 241 

plug load sensors—for the purposes of uncovering the underlying clusters in the data. In the 242 

context of analyzing plug load data, previous work has used supervised learning algorithms that 243 

train models on ground truth data and utilize these models to predict the correct classification of 244 

new data. In particular, the naïve Bayes and support vector machine algorithms have been shown 245 

to be successful in determining whether or not occupant workstations are occupied [31]. 246 

However, these supervised learning methods require the collection of ground truth data for 247 
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training. Because we are interested in designing a method that does not require training on 248 

ground truth data, we looked toward unsupervised clustering algorithms that recognize patterns 249 

in the data and produce clusters with similar characteristics. Previous work has utilized the k-250 

means clustering algorithm to disaggregate occupancy presence data into typical patterns of 251 

occupancy schedules [67]. The k-means algorithm avoids the need to train underlying models on 252 

ground truth data, but it requires setting the number of clusters—“k”—before running the model. 253 

Therefore, the user must either know ahead of time how many clusters are present in the data, or 254 

tune the parameter by running the algorithm with various values of “k” and picking the model 255 

based on some goodness-of-fit test. To avoid the need to train on ground truth data and/or tune 256 

model parameters, we chose to build our method around variational Bayesian inference. 257 

Our method requires collecting continuous time series energy use data from each 258 

occupant’s workstation using a plug load sensor at a time granularity of 5-20 minutes, as this 259 

time scale adequately captures changes in occupant activities [31,36].  A component selection 260 

process that utilizes a Variational Bayesian Gaussian Mixture Model (VB-GMM) determines the 261 

number of activity states present in the data.  For the component selection process, a VB-GMM 262 

is applied for each occupant for each day separately, then a single number of components (M) is 263 

chosen for all occupants. After the component selection process, new Gaussian Mixture Models 264 

(GMM) are fit to the data for each occupant for each day separately, and the energy use data is 265 

classified based on the model fits. 266 

The component selection process is based on a variational Bayesian inference method 267 

that utilizes the GMM as its basis. We employ this component selection process as a means of 268 

alleviating the need to make any a priori assumptions as to the number of activity states the 269 

occupant have. The component selection process makes use of engineering domain knowledge 270 

about occupant dynamics and plug load energy consumption in order to glean more compelling 271 

insights about occupant activities. In particular, we allow our method to recognize when data 272 

corresponding to occupant presence is classified as distinct from data corresponding to occupant 273 

absence, and we allow the component selection process to analyze the presence data separately. 274 

This flexibility, which would not be possible without incorporating knowledge about occupant 275 

dynamics, building energy use, and plug load energy data, allows our method more fully analyze 276 

the data. After the component selection process, new GMMs are fit for each occupant and for 277 

each day using the inferred number of components. This step ensures that all periods of occupant 278 
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energy use are being classified with the same number of components, enabling effective 279 

comparison across occupants. This avoids situations in which, for example, one occupant tends 280 

to have 3 components, and another tends to have 4 components, and it enables extraction of 281 

insights across the entire occupant population in a building.  Figure 1 shows a conceptual outline 282 

of our method, as applied to a sample dataset of three occupants over three days. For the 283 

purposes of this example, the number of components is arbitrarily chosen as 3. 284 

 285 
Figure 1: Conceptual outline of our classification method 286 

3.1. Gaussian Mixture Model 287 

We define a time series of plug load energy use measurements collected at the desk-level for 288 

each occupant: 289 

 "#,% = 	 {)*,… , ),} (1) 
 290 

where . is the occupant index (for all occupants 1,… , 0), 1 is the day index (for all days 1,… , 2), 291 

and 3 is the number of time steps in the period of study (3 depends on the amount of time 292 

between measurements, which can be set as required by the user). For the purposes of this study, 293 

we utilize a time step of 15 minutes, resulting in 3 = 96 if the full day is analyzed. Data 294 

collected over one day for one occupant, as indexed by . and 1 (i.e., "#,%) defines a full sub-295 

dataset. Figure 2 shows a histogram of a typical full sub-dataset. Many algorithms can be applied 296 

to the classification or clustering of granular (sub-hourly) time series datasets, such as k-means, 297 

naive Bayes, and support vector machines [31]. However, for these classifiers to be effective in 298 

determining occupant activity states, either they need to be trained on data that describes the true 299 
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state of occupancy for each occupant in the study, or their parameters need to be tuned on 300 

existing data by the user of the method. Collecting this ground truth data for training is possible 301 

in a small experimental setting, but as previously stated, it becomes quickly intractable as we 302 

move to the analysis of large commercial buildings or even portfolios of buildings. 303 

To derive a method to effectively classify energy states without training data, we looked 304 

to domain research on analyzing human activity states and dynamics. Previous work analyzing 305 

human heart-rate data has utilized a GMM to classify time series data into states describing some 306 

physical activity phenomena [68]. Heart rate measurements taken over the course of a day 307 

exhibit multimodality due to the various physiological processes that affect heart rates. We have 308 

found plug load energy use data to exhibit similar multimodality, as can be seen in Figure 2, and 309 

thus we adopted the GMM as a basis of our method.  310 

 311 
Figure 2: Typical plug load energy use histogram for one occupant over one day. 312 

A GMM is based on the notion that the unimodal Gaussian distribution is useful and 313 

common in modeling real world data, and when observed data is clustered around multiple 314 

peaks—as is the case both with human heart rate variability and with occupant energy use—this 315 

multimodal data can be effectively modeled as a mixture of multiple unimodal Gaussian 316 

distributions that may or may not be independent. In a GMM, the likelihood function for 317 

observation ) is given by: 318 

 
6()) =9 :;<()	|	>;, ?;)

@

;A*
 (2) 

where B is the number of mixture components and :;  is the weight of each component. Each 319 

component follows a normal distribution with mean >;  and standard deviation ?;: 320 
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 321 

The values of each of the component weights (:;) sum to one so that the total probability 322 

distribution is normalized. Each component of the GMM corresponds to a state present in the 323 

data, with each state being described by the component’s Gaussian distribution. 324 

3.2. Variational Bayesian Gaussian Mixture Model 325 

 It is common to use Expectation Maximization (EM) to fit each component of a GMM, 326 

but this method requires the user of the model to make an a priori assumption about the number 327 

of components that are used in the GMM, and therefore if adapted to the occupant energy use 328 

setting, it would require the user to already know the number of energy use states naturally 329 

occurring in the office setting. However, requiring this prior greatly inhibits the extensibility of 330 

the model as it may be difficult to discern the number of energy use states prior to collecting 331 

data. As a result, we aimed for our model to be adaptable to the natural number of energy use 332 

states embedded in the data. We use a variation of the GMM called the Variational Bayesian 333 

GMM (VB-GMM) to allow the model to use Bayesian inference to choose the number of 334 

components. Recent developments in statistical inference have led to the accessibility of such 335 

models [68]. We consider the GMM as described above, and for each observation )M we include 336 

a corresponding latent variable N# comprising a 1-of-K binary vector with elements OM;  for P =337 

1,… , B. The observed dataset for each occupant can be denoted by " = 	 {)*,… , ),} and the 338 

latent variables by Q = 	 {N*,… , N,}. Given the component weights R, we can write the 339 

conditional distribution of Q: 340 

 
6(Q|R) =S S :;

TUV
@

;A*

,

MA*
 (4) 

 341 

We can also write the conditional distribution of the observed data, given the latent variables and 342 

component weights: 343 

 
6("|Q, W, X) =S S <()Y|>;, Λ;

[*)TUV
@

;A*

,

MA*
 (5) 

 344 

where W is the set of component means and X is the set of component precisions defined as the 345 

inverses of the standard deviations. When solving the model, we introduce priors over the 346 



 
14 

parameters W, X, and R. Following common Bayesian statistical practices, we use a Dirichlet 347 

distribution over the mixing coefficients	R and a Gaussian-Wishart prior governing the mean and 348 

precision of each component. We utilize the Python scripting language and the Scikit learn 349 

package [69] to estimate the parameters of the Variational Bayesian GMM. The model flexibly 350 

chooses the number of final components that best describe the data out of a given possible 351 

number of components. In addition to the classification results, a key output of a VB-GMM fit is 352 

the number of components (\) that are used to classify at least one data point. A full theoretical 353 

description of the Variational Bayesian GMM can be found in [70]. 354 

3.3. Component selection 355 

The component selection process utilizes the Variational Bayesian GMM applied to time-series 356 

plug load data. The overall component selection process is applied to all of the collected plug 357 

load data across the space being analyzed. The process utilizes the VB-GMM model by applying 358 

it to each full sub-dataset independently. Figure 3 shows the flow of the component selection 359 

process. First, the set of data points in the period of analysis is defined. Then, a Variational 360 

Bayesian GMM is fit to each sub-dataset—that is, to each occupant and each day 361 

independently—inferring the number of components (n) present in the sub-dataset for one 362 

occupant for one day. As long as there are more days to analyze for an occupant and more 363 

occupants in the space being analyzed (more sub-datasets), this process is repeated, until all 364 

occupants and days are analyzed. After all occupants and days are analyzed, the number of 365 

components most often chosen (the mode of the full set) is determined as M. 366 

In this first step, all of the data points in each day are analyzed for component selection, 367 

and we refer to this process as the primary component selection process. Additionally, we refer 368 

to the number of components chosen by the method in the primary component selection process 369 

as ]*. We define three possibilities: 370 

1. ]* = 1. If only one state occurs most often, only one state is present in the data and no 371 

further analysis is done.  372 

2. ]* = 2.  Often, the VB-GMM selects two states most often in this primary component 373 

selection process. Figure 4 shows a typical occurrence of the VB-GMM choosing two 374 

components for a full sub-dataset. By observing the data, we note that this classification 375 

essentially splits plug load energy use data for each day and occupant into two states: (1) a 376 
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state in which very little or no energy is being used at the workstation, and (2) a state in 377 

which at least some energy is being used at the workstation. As can be inferred from Figure 378 

4, the higher energy state as classified by the GMM has much more variability than the lower 379 

energy state. This typically occurs because it is separating data associated with presence from 380 

data associated with absence. Previous analyses of occupant activities have adopted the 381 

practice of first separating the data corresponding with occupancy from that corresponding 382 

with absence and analyzing the occupancy data separately [65]. Therefore, we integrate this 383 

domain knowledge on occupant dynamics into our method: when exactly two components 384 

are chosen in the primary component selection process, the data classified in the higher 385 

energy component for each occupant is separated and a new VB-GMM is applied to this 386 

separated data (as long as two or more data points are in the higher component). We define 387 

this process as the secondary component selection process, and the process in Figure 3 is 388 

repeated, this time just for the data classified in the higher energy component. Again, we 389 

determine the number of components (\) chosen most often across all occupants and all days, 390 

and refer to this value as ]K. After the component selection process, in the subsequent 391 

classification step, this two-step process is once again applied.  392 

3. ]* > 2. If three or more components occur most often in the primary VB-GMM, this 393 

number of components is used in the classification step. 394 

 395 
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 396 
Figure 3: Component selection process using the Variational Bayesian GMM. 397 

 398 
Figure 4: Result of fitting 2-component GMM to all energy use data for one occupant over one day, with dashed line 399 

showing where the “Low energy” and the “High energy” components cross. 400 
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3.4. Activity state classification 401 

Once the number of components is inferred through the component selection process, we fit new 402 

GMMs to the data so that all occupants are classified into one of the same number of activity 403 

states. GMMs are fit independently for each occupant for each day, but all GMMs use the same 404 

number of components, as determined in the component selection process. Once a GMM is fit to 405 

data, the data points " are classified into components: {_*,… , _`} ∈ 	". Figure 5 shows the flow 406 

for the activity state classification process applied to data from one occupant for one day. If the 407 

primary component selection process resulted in exactly two components (]* = 2)—one 408 

corresponding to occupant absence (_bcd) and the other corresponding to occupant presence 409 

(_e#fe)—then a GMM is fit with two components to the data and the higher energy component is 410 

separated. Then a new GMM is fit to the higher energy data based on the number of components 411 

selected in the secondary component selection process (]K). If the primary component selection 412 

process resulted in three or more components (]* > 2), a GMM is fit to the original data with 413 

that number of components. Once the GMMs have been fit to the data for each occupant for each 414 

day separately, the data points are classified into their respective activity states as determined by 415 

the GMM fits. 416 
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 417 
Figure 5: Activity state classification process using the GMM for one occupant and one day. 418 

Figure 6 summarizes the classification process for one occupant and one day in the case 419 

where the primary component selection process resulted in two components, and the secondary 420 

component selection process also resulted in two components. In this case, a total of three 421 

activity states are utilized to describe the data. Figure 6-a shows a fit of a 2-component GMM to 422 

an occupant’s energy use data over one day. Any energy use value can be assigned probabilities 423 

that it is associated with each component of the GMM. The point between the means of the two 424 

components where the probabilities are equal—the point in Figure 6-a at which the probability 425 

density function lines cross—becomes the cutoff point between the lower energy (_bcd) and 426 

higher energy (_e#fe) states: any value below this point is part of the lower energy state and any 427 

value above this point is part of the higher energy state. Each of the occupant’s energy use values 428 

observed throughout the day is classified according to this system. In the secondary step, the 429 

higher energy state data is separated out, and another 2-component GMM is fit to just this data, 430 

as shown in Figure 6-b. Once again here, the point at which the probability density function lines 431 

cross becomes the cutoff point between the two states. As a result of this specific process, three 432 

states are determined (_bcd, _*, _K), which can be visualized by the green, yellow, and red 433 

density functions in Figure 6. 434 
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 435 
Figure 6: Activity classification process when primary component selection process results in two components. (a) 436 

GMM fit to all energy use data from one day. (b) A second GMM fit to just the “higher energy” data from (a). 437 

 We design our method to automatically determine when the secondary component 438 

selection process is necessary in order to provide deeper insights into the data associated with 439 

occupant presence. We do this by incorporating explicit domain knowledge into the method. 440 

Specifically, the method recognizes when the GMM is only forming two clusters—one 441 

associated with absence, and one associated with presence—and it then analyzes the more 442 

variable presence data in a second step. If we did not design our method with this functionality to 443 

recognize when two steps are necessary, the analysis of the data would be much less insightful, 444 

limiting the final number of activity states to two—presence and absence—in some situations. 445 

Without incorporating domain knowledge about the typical structure of plug load data 446 

signatures, our method would be less effective in describing behavioral patterns of occupants and 447 

in turn be limited in its applicability for informing building design and operations. 448 

4. VALIDATION STUDY 449 

In order to validate and benchmark the performance of our proposed energy state classification 450 

method, we conducted a two-week study involving seven occupants in an academic office 451 

setting. The occupants were five graduate students, a postdoctoral research scholar, and a 452 

professor in a total of three offices. Each occupant had his or her own desk. Three graduate 453 

students and the postdoctoral research scholar shared one office. Another two graduate students 454 
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shared another office, and the professor had their own office. We note that validation studies of 455 

this size are common in the field of occupant activity recognition in office settings [71]. Typical 456 

occupant activities included working on a computer at a desk, going to classes, holding meetings 457 

in one of the three offices, and taking lunch, coffee, or social breaks. 458 

4.1. Data collection & analysis 459 

Plug load energy use over 15-minute intervals was monitored and stored using HOBO data 460 

loggers connected to a power strip at each occupant’s workstation. Each station consisted of a 461 

computer plugged into the power strip, and five of the seven workstations had a monitor plugged 462 

into the power strips. Participants also were allowed to include some miscellaneous but relatively 463 

small power loads, such as cell phone chargers. 464 

To determine how well our classification model captures activity states of occupants, the 465 

participants of the validation study manually recorded their activities and the times of their 466 

activities over the course of each day. Occupants kept track of the times they arrived and left 467 

their desks both at the start/end of their workday and during breaks and meetings throughout the 468 

day. This recording of occupant activities formed the “ground truth” data of occupant activity 469 

states, with noted activities indicating shifts between the states of occupancy defined in our 470 

methodology. To compare the results of our activity classification method with the ground truth 471 

data, we counted each instance of an occupant arriving at or leaving his or her desk as an “event” 472 

associated with a transition between states. For example, if the occupant notes an arrival at his or 473 

her desk at the start of the workday, this event is associated with a shift from a lower energy state 474 

to a higher energy state. Similarly, if the occupant notes that he or she has left the desk, this 475 

event is associated with a shift from a higher energy state to a lower energy state. Over the 476 

course of the two-week study, 345 events were recorded by the seven occupants. 477 

We input the collected plug load energy use values to our classification method and 478 

compared each day’s state classification results with the ground truth activity data. (The 479 

classification process resulted in a total of three states.) If the occupant’s recorded event 480 

corresponded with a shift between states that aligns with the activity (e.g., a shift from a higher 481 

state to a lower state if the occupant leaves his or her workstation), then we consider this event to 482 

be correctly classified (i.e., a true positive). If the method shows a shift between energy states, 483 

but no event was recorded, we consider this a false positive. And if the occupant records an event 484 
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but no shift between states was detected by the method, we consider this a false negative. Figure 485 

7 shows the raw data and the occupant activity detection results for one occupant over a 486 

workday, with the two most common of these scenarios—true positives and false negatives—487 

depicted by annotation. At 9:07 a.m., the occupant noted a break, but the method did not indicate 488 

a shift in occupancy states at this time—hence, we annotate this as a false negative. At 5:03 p.m., 489 

the occupant notes that he or she left for the day, and the method indicated a corresponding shift 490 

from a higher state to a lower state—hence, we annotate this as a true positive. 491 

 492 
Figure 7: Raw energy use values and classification results, shown with an example of a False Negative as well as a 493 

True Positive. 494 

4.2. Validation Results and Discussion 495 

We repeated the analysis shown in Figure 7 for each occupant for each day to understand the 496 

effectiveness of our classification method. For building management systems to be able to 497 

effectively implement information about the behavior of occupants, a high level of accuracy is 498 

required. However, not all measures of accuracy have the same implications. As indicated in [4], 499 

situations in which detection sensors or methods determine a state of absence in the building 500 

when in fact the building is occupied are more problematic than when they determine a state of 501 

occupancy when in fact the building is unoccupied. These situations can lead to lights switching 502 

off or a lack of HVAC service to occupants in a room, which can not only cause discomfort, but 503 
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it can also lead to occupants overriding the intelligent building systems that make use of the 504 

information about occupant presence [72]. Consequently, it is extremely important to minimize 505 

the rate at which these sensors determine false absence. At the same time, however, if the rate at 506 

which sensors determine false occupancy is too high, building managers will not be able to 507 

effectively make use of the information, leading to missed opportunities for energy efficiency. 508 

Recent work [5,9] has suggested that in order to be effective this false occupancy rate can be 509 

only as high as 20%.  510 

To measure the performance of our method in capturing occupant activity shifts, we 511 

utilize the precision and recall metrics. The precision metric for the method—the ratio of true 512 

positives to all positives (including true and false)—is calculated to be 92.7%. The recall 513 

metric—the ratio of true positives to the sum of true positives and false negatives—is calculated 514 

to be 73.9%. Both of these metrics suggest that our method is accurate in capturing changes in 515 

occupant activity states.  516 

It is important to note the rates at which our method leads to false measures of absence 517 

versus false measures of occupancy. We can infer from Figure 7 that our definition of false 518 

negatives typically occurs when an occupant indicates a change in state associated with a break 519 

from working at their workstation, but the method does not recognize this change in state. (It is 520 

also possible that a false negative could be associated with a missed state transition associated 521 

with starting the workday or leaving the workday, but these situations occur very rarely.) 522 

Therefore, a false negative is typically associated with a false measure of occupancy at the 523 

workstation (i.e., the occupant has taken a break but the method has not recognized this break). 524 

Alternatively, a false positive indicates that the method has detected a change in state when no 525 

state change has been recorded by the occupant. We note that this is not the same type of error as 526 

the false negative that is indicated in Figure 7, where the occupant did record an activity, but the 527 

algorithm did not detect a change in state. Most often, false positives are associated with the 528 

method detecting that the occupant has taken a break, when in fact the occupant is still working 529 

at the workstation. Therefore, it is very important to minimize these false positives, because false 530 

measures of absence are more problematic than false measures of occupancy, as discussed 531 

above. Our results show a very high precision rate of 92.7%, indicating that false measures of the 532 

absence of occupants are minimized. At the same time, our recall rate of 73.9% suggests that our 533 

method is still providing valuable information about the true state of occupant activities in the 534 
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building. We also determined the overall false occupancy rate by comparing the output of the 535 

method with the occupant notes. We find the overall false occupancy rate to be 5.8%—well 536 

below the 20% threshold suggested by the literature [5,9]. 537 

Table 1 shows the precision and recall metrics for each occupant in the validation study. 538 

As shown in the table, Occupant 7 has the lowest values for both precision (84%) and recall 539 

(44%). We hypothesize the precision and recall discrepancies occur because Occupant 7 has 540 

atypically low variability in actual energy use. The standard deviation of energy use for 541 

Occupant 7 for medium and high energy states was 2.82 Wh, whereas the standard deviation of 542 

energy use for the other occupants ranged between 4.41 and 9.74 Wh. Therefore, in raw energy 543 

consumption terms, the energy consumed by Occupant 7 was less likely to change significantly 544 

in correlation with a noted event. On days where the method performed abnormally poorly (i.e., 545 

more than 50% of noted events were false positives), the average standard deviation of energy 546 

use values was 3.56 Wh. On days where the method performed relatively well (i.e., less than 547 

25% of events were false positives), the average standard deviation of energy use values was 548 

6.79 Wh. This indicates that higher variability in energy use values is correlated with better 549 

performance of the model. 550 

 551 
Table 1: Precision and Recall metrics for each occupant in the validation study. 552 

Occupant Precision Recall False Occupancy Rate 

1 100% 77% 5.8% 
2 93% 85% 2.6% 
3 93% 80% 1.6% 
4 91% 82% 4.2% 
5 99% 60% 17.1% 
6 97% 81% 2.1% 
7 84% 44% 19.8% 

All Occupants 92.7% 73.9% 5.8% 
 553 

5. CASE STUDY: SAN FRANCISCO OFFICE BUILDING 554 

We applied our method to data collected in a typical office building in San Francisco, CA, USA 555 

in order to demonstrate the merits of our methodology for informing energy efficient operations 556 

and space utilization of a commercial building. The occupants were employees of an 557 
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organization headquartered in San Francisco. Based on observations during a site-visit, we found 558 

that activities in the space were comprised of typical office work at a computer workstation, 559 

meetings, and breaks from working (including lunch and social breaks). 560 

5.1. Data collection 561 

We utilized plug load data collected for 47 occupants in an open-office building in San 562 

Francisco, CA, USA using Enmetric plug load sensors [73]. The sensors continuously collected 563 

and reported total energy use over 15-minute periods at the individual desk level. By manual 564 

inspection of the data, we found that some of the sensors had connectivity issues, and that on 565 

certain days, these sensors did not report any energy consumption at all. We therefore limited our 566 

analysis of this data to a clean segment of the data spanning 41 continuous days. We note that 567 

our method could be applied to data outside this time span, but that more occupants would 568 

simply be classified into a very low energy state throughout the day.  For the sake of brevity and 569 

clarity, we choose to concentrate our analysis and discussion the 41-day period that had 570 

consistent data. 571 

5.2. Case study results discussion 572 

Following the methodology described in section 3 above, we first performed the component 573 

selection step and then used the results to classify the data into activity states. During the 574 

component selection process, each Variational Bayesian GMM was limited to using up to 5 575 

components to classify the sub-dataset. With a total of 1,927 sub-datasets, the Variational 576 

Bayesian GMM was applied to each sub-dataset, and the majority of the models (51.3%) chose 2 577 

components to classify the data, as shown in Figure 8. None of the models chose more than three 578 

components to classify the data. After determining that the Variational Bayesian GMM most 579 

often chose 2 components for this dataset, we fit another GMM to the plug load energy use data 580 

for each occupant and for each day, using exactly 2 components for each GMM. This process 581 

allows for the classification of each 15-minute period of occupant activity into one of 2 states: 582 

low energy and high energy. Because exactly two components were chosen in the primary 583 

component selection process, the data classified into the high energy state was separated and the 584 

secondary component selection process was performed. 585 
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 586 
Figure 8: Number of states chosen (out of 5) by Variational Bayesian GMM for all energy use values for each 587 

occupant for each day. 588 

Another Variational Bayesian GMM was fit to each day’s high energy data for each 589 

occupant, and once again the majority of the models (58.7%) chose 2 components, as shown in 590 

Figure 9. As long as the initial low/high energy state classification results in at least two data 591 

points classified as high energy, we can then fit another 2-component GMM to the data points 592 

initially classified as high energy, reclassifying the high energy state into two states: medium 593 

energy and high energy. If one or fewer data points is initially classified as high energy, our 594 

method does not perform the second classification into high and medium energy states. 595 
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 596 
Figure 9: Number of states chosen (out of 5) by Variational Bayesian GMM for just the "high energy" energy use 597 

values for each occupant for each day. 598 

Our method resulted in a total of three possible states for each 15-minute period for each 599 

day for each occupant, which we delineate as low energy, medium energy, and high energy 600 

states. By allowing the Variational Bayesian GMM to adaptively fit to the plug load energy use 601 

data for each day and occupant, we infer the natural number of states that describe the overall 602 

dataset. The result of this analysis is a mapping from raw energy use values to states of occupant 603 

activities in the building. Figure 10 illustrates this mapping for each occupant over the floor plan 604 

of the building. As Figure 10-a shows, it can be difficult to understand the meaning of the raw 605 

energy use values, since a value of, for example, 5Wh over the 15-minute period can mean very 606 

different things for two different occupants. However, as Figure 10-b shows, the mapping into 607 

activity states abstracts information about these energy use values, providing deeper insights into 608 

the activities of occupants across the floorplan of the building. 609 
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 610 
Figure 10: Mapping from raw energy use values (a) to occupant activity states (b) for each occupant over one 15-611 

minute period 612 

A potentially useful application of this methodology is to aid in understanding nuanced 613 

aspects of the energy efficient operations and space utilization of buildings to which it is applied. 614 

Figure 11 shows the progression of occupancy states for each of the 47 occupants over one 615 

afternoon/evening in the study period, from the 15-minute period ending at 5:00pm to the 15-616 

minute period ending at 7:15pm (10 time-steps in total). Monitoring this progression provides 617 

insight into how the space utilization in this office setting changes over time. This information 618 

provides value for building managers who seek to ensure that spaces are being utilized 619 

efficiently. Furthermore, as building designers and engineers embrace the notion of performance 620 

based design, they are beginning to adapt the programming phase of the design process to 621 

include more nuanced understandings of space utilization. Monitoring and visualizing occupant 622 

activity states in buildings can help in the development of space use frameworks that more 623 

closely align with the true states of occupant activities in buildings. 624 

As building lighting and HVAC systems continue to be installed with more granular 625 

control over spatial and temporal dimensions, building managers can also use this information to 626 

optimize the control of these building systems to reduce the amount of energy required to 627 

provide services to their occupants. Visualizing this information also provides for the 628 
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opportunity to make recommendations for co-optimization between occupants, space, and 629 

building systems. For example, if groups of occupants who do not have desks near each other 630 

regularly shift to low energy states at the same time, these occupants could potentially be 631 

relocated to be physically near each other so that building systems can reduce services like 632 

lighting and HVAC in the space they occupy. An example of such a realignment strategy is 633 

depicted in Figure 12. Here, occupants within the blue circles are identified as occupants that 634 

shift from a higher state to a lower state from 2:00pm to 2:30pm on a specific day in the study 635 

period, perhaps for a meeting or to take a break at the same time (Figure 12-a). If this pattern 636 

recurs commonly in building, one potential strategy would be for these occupants to move to 637 

workstations that are physically near one another Figure 12-b). After realignment, lighting and 638 

HVAC systems could adjust to the change in occupancy states at the identified workstations. 639 

 640 

 641 
Figure 11: Visualization of the changing space-use levels over time using activity state classification method. 642 
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 643 
Figure 12: Potential occupant realignment strategy. (a) Occupants with similar patterns are identified. (b) After 644 

realignment, intelligent building systems can take advantage of activity state shifts. 645 

The analyses presented in Figure 11 and Figure 12 demonstrate the ability of our model to 646 

provide new knowledge to building managers and designers. Without requiring training data or 647 

an a priori assumption about the number of activity states in the plug load data, we are able to 648 

glean effective insights about occupant activities in the space. Furthermore, the visual 649 

representation of the occupancy states across the floorplan offers new insights that could not 650 

otherwise be interpreted from the raw plug load energy use values. As Akbas et al. [55] notes, 651 

effective visual representation of new spatio-temporal information can be an effective decision-652 

support tool for managers and designers. As a result, our method has the ability to help building 653 

operators make decisions for energy efficient system management and to help designers build 654 

models of occupant activities for improved design of future spaces. 655 

6. LIMITATIONS AND FUTURE WORK 656 

The main limitations of our method stem from the inherent constraints of plug load energy use 657 

data to capture activities of occupants in buildings. While the method performs well enough to 658 
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provide valuable information to building engineers, operators, and designers—based on 659 

suggested precision metrics from the literature—there is opportunity to further improve the 660 

precision. For example, while plug load energy use data typically changes when occupants take 661 

extended breaks from their workstations, there are situations in which plug loads stay high while 662 

occupants take short breaks from their workstations. Future work could incorporate the use of 663 

other sources of data, such as infrared sensors, in order to complement the plug load data 664 

collected for our method. A composite data stream that includes multiple sources could lead to 665 

more precise detection of occupant activities. 666 

 In addition to possible improvements in accuracy, future work could consider identifying 667 

occupant activities that are not associated with plug load energy use. Plug load sensors are cost-668 

effective for this task and often easily accessible, since they are commonly installed in office 669 

buildings for various purposes beyond inferring activity patterns, such as for monitoring the 670 

energy consumption of miscellaneous equipment. While their data provide a good proxy for 671 

occupant activities, a more robust understanding of occupant behavior should include non-672 

energy-intensive activities. Again, such activities could be recognized using data streams that are 673 

complementary to the plug load energy use data. Similarly, the method developed in this paper 674 

could be extended for the analysis of analogous data produced from other sensors, in particular 675 

when time series data exhibits multimodality and domain knowledge about the states associated 676 

with the components of the distribution is known. 677 

It is important to note that while the validation study discussed in Section 4 shows 678 

reasonable reliability and internal validity, claims about its external validity must be made with 679 

caution. While our inference method is designed to be able to adapt to individualized settings, 680 

where different occupants have different baseline, average, and maximum plug load energy 681 

consumption, further studies are needed to determine the validity of the classification results in 682 

settings beyond this internal validation study. Our internal validation study demonstrates the 683 

robustness and adaptability of our method within the setting of the study, but future studies with 684 

large-scale ground truth data collection are needed for broader claims about the true scalability of 685 

our method. 686 

One exciting area of future work involves utilizing this data to gain insight into the 687 

natural structure of the occupant network in the building. Our method provides information about 688 

states of occupant activities in the building, which can be useful in understanding not just 689 
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individual activity states, but also the relationships among occupants. For example, two 690 

occupants that have very similar patterns of activities in buildings could be highly related 691 

socially or organizationally. Building managers and designers could make use of this information 692 

by potentially suggesting shifts in the occupant layout in the building, allowing building systems 693 

to be more closely aligned with the states of occupancy across the building. Furthermore, by 694 

gaining an understanding of the structure of the network of occupants, eco-feedback systems that 695 

attempt to convince occupants to adjust their behavior could become more effective, as the 696 

network structure of occupants has been shown to have high importance in these strategies 697 

[37,43]. 698 

7. CONCLUSIONS 699 

The main contributions of this work are twofold: first, to introduce a new adaptable method that 700 

integrates knowledge-based and data-driven approaches for inferring occupant dynamics in 701 

building; and second, to demonstrate how our proposed method can be utilized to infer the 702 

occupant dynamics occurring in a building and inform intelligent optimization strategies for 703 

energy efficiency and space utilization. By integrating a variational Bayesian version of the 704 

Gaussian mixture model with explicit domain knowledge about occupant dynamics and plug 705 

load data signatures, we designed our method to require no ground truth data to perform with a 706 

high level of accuracy. These methodological design decisions allow our method to be more 707 

easily applied to situations where ground truth data is difficult to collect, such as when there are 708 

many occupants across one or more buildings. 709 

 In analyzing newly accessible plug load data streams to infer occupant activity states in 710 

buildings, we can gain a deeper understanding of the complexity of occupant dynamics at a high 711 

level of spatial and temporal granularity. In turn, this deeper understanding translates to new 712 

knowledge about occupant dynamics that can help building designers, engineers, and managers 713 

better understand how occupants respond to the spaces they occupy. These decision-makers will 714 

now be armed with the knowledge that can enable them to intelligently manage building 715 

operations and design to enhance energy efficiency, space utilization, and occupant satisfaction. 716 

Buildings will inevitably continue to play a crucial role in each of our lives as occupants and in 717 

the world’s sustainable energy future. New methods that combine the extant knowledge of 718 

occupant dynamics and building systems with emerging data-driven methods could provide us 719 



 
32 

with the necessary insights to design, operate, and manage the next generation of high-720 

performance buildings. 721 
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