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ABSTRACT 

Many designers and researchers have grappled with the problem of optimally locating 

buildings and use types in a neighborhood-scale development. But little work has used data-

driven optimization to aid in creating urban design schemes. The paradigm of single-use 

Euclidian zoning has heavily impacted the way our neighborhoods, cities, and suburbs are 

designed, resulting in the physical separation of uses. However, as we grapple with emerging 

issues of environmental and social sustainability in cities, there is a pressing need to consider 

alternative urban designs that require less dependence on personal automobiles and that foster 

healthier cities. In this paper, we develop a methodology for (1) automatically assessing the 

walkability of neighborhoods by adopting a common walkability metric and (2) optimizing the 

layout of buildings and amenities across a known grid in order to maximize the walkability 

metric. We apply this methodology to a case study of the Potrero Hill neighborhood in San 

Francisco, California. We find that, in comparison to the existing layout that can be characterized 

by Euclidian-style separation of uses, the optimized layout suggests distributing amenities across 

the street network, resulting in a two-fold increase in walkability. This tool and analysis have the 

potential to provide computational and data-driven support for urban designers and researchers 

hoping to understand and improve the walkability of urban spaces. 

INTRODUCTION 

The design and planning of urban spaces has a long and storied history, with ideas about the 

best use of urban space dating to Ancient Rome. Some of the earliest plans for cities—including 

Paris, London, and Washington, D.C.—were created by master-builders or architects with the 

backing of government. Today, almost all cities implement some form of urban planning vis-à-

vis rules about building form, use, and location (Best 2016). 

Single-use zoning, also known as Euclidian zoning—in which cities are divided into areas 

with specific rules for building height, use, and density—became possible and prevalent after the 

landmark case Village of Euclid v. Amber Realty Co. in 1926 (Wickersham 2000). In the period 

following World War II, the physical separation of functional uses in cities became both feasible 

and desirable due to increased rates of property ownership and use of the personal automobile 

(Best 2016). Even in dense cities, single-use zoning replaced existing mixed-use developments 

(Jacobs 1961). However, recent environmental and social concerns (e.g., the public and planetary 

health consequences of automobile pollution) have led urbanists, local governments, and city 

planners to rethink rigid Euclidian rules. One important reason is that developments with a mix 

of uses reduce residents’ dependence on personal vehicles. Aside from the obvious 

environmental implications, urbanists such as Jane Jacobs (1961) have argued that increased use 

of sidewalks and reduced dependence on cars create vibrant, socially resilient communities. As a 

result, the study and desirability of walkable communities have increased greatly in recent years. 
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Recently, we have also seen a vast surge in urban data resources and computing power. 

Given these resources, researchers now have a unique opportunity to put these concepts of ideal 

urban form to the test. This dual paradigm of evolving urban planning concepts and maturing 

cyber- physical analysis has the potential to validate or entirely upend the consensus of what 

makes a city effective. As a result, there is a pressing need to explore how computing tools such 

as optimization can augment current decision-making processes around zoning and rule-making 

in urban areas. Given the complexity of city planning—which includes street and path layouts, 

building geometries, and use types—various approaches must be explored. In this paper, we 

develop a methodology for maximizing the walkability of a neighborhood-scale development by 

choosing the layout of buildings in an existing street grid, given the number of buildings, each 

building’s prescribed use, and possible lots for placing each building. In a case study, we 

compare the existing layout of a neighborhood in San Francisco, CA with an optimized layout 

that distributes key urban amenities quite differently. 

BACKGROUND 

Recent urban design research has identified the concept of walkability as a key metric in 

addressing environmental and social sustainability concerns in cities. Porta and Renne (2005) 

include interconnectedness and accessibility of the street network as a critical component of their 

tool for assessing the sustainability of urban form. Furthermore, they argue that in addition to 

these street network characteristics, the community must colocate a diversity of land uses so that 

multiple uses can be accessed by walking. 

Some studies have used heuristic algorithms to optimize the walkability of neighborhood-

sized developments. These heuristics produce best-practice guidelines for walkable communities 

built on architectural and urban design expert knowledge (Southworth 2005). While these 

guidelines can be important and effective tools for urban designers in their planning work, they 

lack an objective score that can be automatically calculated and applied quickly to various design 

alternatives. Exploiting automated computational tools can greatly expand the solution space and 

reveal previously overlooked options. 

A few recent studies have explored the notion of optimizing physical layouts of structures in 

real-world environments. Razavialavi and Abourizk (2017), for example, developed a genetic 

algorithm framework for optimizing layout on a construction site. Rakha and Reinhart (2012) 

developed a generative modeling platform that assesses different parametric urban massing 

forms for walkability. They adopt the walkability scoring system discussed in Carr et al. (2010) 

as the metric for optimization, and they utilize a genetic algorithm to optimize walkability by 

placing different uses. This previous quantitative optimization work, while valuable in advancing 

the role of computing in assessing urban form, has not been applied to evaluate the performance 

of existing urban areas. Furthermore, the implications of the walkability optimization results 

have not been fully explored, especially in their relationship to conventional wisdom about 

effective urban design. 

METHODOLOGY 

The purpose of the methodology outlined in this section is to maximize a quantitative 

walkability metric of a neighborhood-scale development given constraints about the number and 

possible locations for each building type. The methods we outline here can be used to compare 

optimized layout of buildings and amenities with alternative designs, including those created 

through heuristics or those that already exist in cities. 
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Our approach follows a procedure with three main steps: 

1. Problem definition—define the walkability objective function and how it is measured, 

and define the solution space (i.e., possible locations of buildings) as well as the 

constraints (i.e., number of each building type available). 

2. Generate random designs—develop a routine for creating a population of randomly 

generated designs, which are defined by the locations of each building type. 

3. Optimize design—assess designs, create a new set of designs based on the best 

performers, and repeat until convergence. 

Problem Definition 

In order to accomplish the ultimate goal of maximizing walkability, we first need a 

walkability metric and a set of variables that can be changed to vary this metric. In this paper, we 

adopt the metric discussed in Rakha and Reinhart (2012) and hereafter refer to it as the Street 

Score. The Street Score is a value between 0 and 100, and it is calculated for one residential unit 

at a time. In its most general form, the Street Score ( S ) is calculated as the sum of walking 

distance scores between each residential unit and a prescribed number of different amenities 

(e.g., parks, restaurants, grocery) as follows: 

  1

1
100

A

a aa
S

A 
  w s   

where the vector aw   is the weighting vector for amenity a  and the vector as   is the distance 

score vector for amenity a  (defined below). The vectors w  and s  can have different sizes for 

each amenity, but the size of aw  is always equal to the size of as . This difference in vector sizes 

is simply a function of the fact that the implementation of the Street Score metric can specify 

different numbers of each amenity to consider in the scoring (e.g., 2 coffee shops vs. 20 

restaurants). The distance score is calculated as a function of the walking distance ( x ) from the 

residential unit to the amenity under consideration. This walking distance must be defined 

according to the street grid (e.g., in a perpendicular north-south, east-west grid, the distance 

would be the L1 norm, or the “Manhattan” walking distance). For instance i  of amenity a , the 

distance score is calculated as follows: 
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for walking distance x , where 1d , 2d , and 3d   are set by the user. The result is a score, based on 

the distance, that is scaled between 0 and 1. 

The design variables for the problem are the locations of buildings and amenities. The 

categories of buildings/amenities can be set according to the individual problem, but it is 

important to note that the initial work by Rakha and Reinhart used residential units, restaurants, 

generic shops, coffee shops, bookstores, banks, grocery stores, parks, schools, and entertainment 

venues. In this initial work, we simplify the design space by defining specific lots at which 

different buildings of different sizes can be placed. 
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Optimization 

Given a calculable objective function (Street Score) and design variables (locations of build- 

ings/amenities), the next step is to perform optimization. We utilize a genetic algorithm, as these 

have been shown in previous work to be effective in optimizing physical layouts with large 

solution spaces (Rakha and Reinhart 2012; Razavialavi and Abourizk 2017). Each step in the 

genetic algorithm requires creating a routine specific to this specific problem setting. These 

subroutines are outlined in this subsection. To initialize the population, we must be able to create 

random designs. Given a street grid with possible lots as well as a building stock with numbers 

of available building/amenity types, we can randomly assign each building type to a lot. For 

implementation, it can be simplest to randomly assign larger amenities—that may take up 

multiple lots—first, working from largest amenities to smallest. Once an initial population is 

created, a Street Score can be calculated for each neighborhood design. To adapt the Street Score 

methodology from a single residential unit to an entire neighborhood, we randomly sample 

residential units from a neighborhood, calculate the Street Score for each, and average the 

results. Given Street Scores calculated for all neighborhood designs, we can select parents that 

will help us create future generations. Different selection criteria can be utilized, including 

truncation selection, tournament selection, and roulette wheel selection, as discussed in 

Kochenderfer (2018). 

Once parents are selected, crossover and mutation must be implemented to create new 

generations. The process for crossover is detailed in Algorithm 1. The notion is to randomly 

choose the location of each building/amenity from the parents’ locations for that 

building/amenity. First, all non-residential buildings are selected from the parents and placed, 

and then the residential units are filled in randomly. The concept of simulated annealing can be 

incorporated into the overall genetic algorithm through modification of simple crossover (and 

mutation), as discussed in Adler (1993). In simulated annealing crossover, a child is created from 

two parents, and it is always accepted if it performs better than the parents. If it performs worse 

than its parents, it is accepted with a probability that shrinks over generations. Formally, the 

child is accepted with the following probability: 

 
 Δ /

1 Δ 0
 

  ,1 Δ 0
S t

S

min e S


 




  

 

where ΔS  is the difference between the child’s Street Score and the best of the parents’ Street 

Scores, and t  is a temperature value that decreases according to an exponential annealing 

schedule, which makes use of the following decay factor:
 1 ( )k kt t

 , where   is a user-defined 

parameter. 

The algorithm for mutation is shown in Algorithm 2. Mutation is only performed on a child 
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with probability given as a parameter in the overall genetic algorithm. When it is performed, a 

given number of randomly chosen non-residential buildings/amenities are swapped with 

residential buildings/amenities. Mutation is implemented in this way because the relative 

locations of residential units and non-residential amenities are the key drivers in the Street Score 

function. Simulated annealing can also be applied to mutation, using the original individual and 

the mutated individual as the candidates for acceptance. Crossover and mutation are used to 

create new generations of neighborhood designs. In the overall algorithm, we track the best 

performing individuals to determine the overall most walkable neighborhood design. 

 
Figure 1. Potrero Hill existing layout with amenities and their weight vectors. 

CASE STUDY: POTRERO HILL, SAN FRANCISCO, CALIFORNIA 

To evaluate the proposed optimization methodology and test it on a real-world urban area, 

we apply it to an existing neighborhood-scale urban design in the Potrero Hill area of San 

Francisco, California. The grid we consider in this case study is 9 blocks by 3 blocks and roughly 

320,000 m2 in area. Figure 1 shows the abstracted study space, the amenities that are present in 

the design space, and weight vector associated with each amenity (as described above). These 

amenities are found and categorized through a manual audit of the space using Google Maps. 

The categorizations and weights in this study largely follow those in Rakha and Reinhart’s 

previous work, which were chosen based on their analysis of both importance and the need for 

choice (as lengths of the weight vectors indicate how many of each amenity are considered in the 

calculation of the Street Scores). We increased the weight for the park amenity given its 

prominence in the existing design. Furthermore, consistent with Rakha and Reinhart, we did not 

consider offices to be an amenity. 

To convert the physical layout to an abstract layout with appropriate dimensions and with 

lots for placing buildings and amenities, we used the osmnx package (Boeing 2017) for Python. 

We made certain assumptions in order to simplify the abstract representation of the 

neighborhood. Based on our assessment of the study area, we assume that, on average, there are 

32 possible lots in each block. We also assume that the park and the schools each occupy one full 

block—where a full block is defined as the lots entirely contained by four intersections. 

Furthermore, we assume that all other building types each occupy one lot. It is important to note 

that this last assumption could be easily changed such that different building/amenity types take 

up different numbers of lots and/or partial lots to reflect multi-use development. For this study, 

however, we aimed to keep the abstract neighborhood representation as simple as possible in 

order to focus on optimization and interpretation. 

For calculating the Street Score, we need to set values for the parameters 1d , 2d , and 3d  
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(discussed above). Given the geometry of the neighborhood, we set 1 50d m , 2 300d m , and

3 1600d m . It is important to note that these values are smaller than they are in Rakha and 

Reinhart’s initial work. We choose smaller values because the physical distances in our case 

study are much smaller than those in the Rakha and Reinhart study, and therefore it would be 

relatively difficult to achieve a perfect Street Score. For the existing urban layout, we calculate 

the Street Score to be 31.8. 

 
Figure 2. Comparison of implementations with varying degrees of simulated annealing. 

 
Figure 3. Optimized neighborhood layout. 

In order to optimize this layout, we execute the genetic algorithm outlined above. The first 

step in this algorithm is to generate an initial population. We first generate a random population 

of neighborhood designs and assess their Street Scores. The random design routine first chooses 

random blocks for placing the park and schools, since these amenities take up full blocks. It then 

chooses random lots for placing all other amenities, and finally it fills up the remaining lots with 

residential units. After generating a population of 1,000 individuals, we calculate the Street Score 

for each. The resulting distribution has a mean of 52.1 and a standard deviation of 3.4. 

We implement a version of truncation selection in the genetic algorithm to bias toward the 

better performing individuals. We first sort the individuals by decreasing Street Score (since we 

are maximizing). We then choose from the best performing individuals, but we also ensure that a 

randomly chosen set of the remaining population is incorporated in the selected group in order to 

protect against local minima. The mutation and crossover routines are implemented as discussed 

in the Methodology section. On a small population, we test three versions of the genetic 

algorithm, each with different levels of use of the concept of simulated annealing. In the baseline 

case, we do not include simulated annealing, but we test two other cases: one in which simulated 
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annealing is incorporated into mutation, and another in which simulated annealing is 

incorporated into both mutation and crossover. When simulated annealing is incorporated, we 

use the exponential annealing schedule with 3 / 4   . The results from this test are shown in 

Figure 2 (where GA represents ‘genetic algorithm’ and SA represents ‘simulated annealing’). As 

we can see, the genetic algorithm with simulated annealing incorporated into mutation performs 

the best. 

Once deciding that simulated annealing should only be applied to the mutation step, we 

execute the genetic algorithm with the following parameters: 1,000 designs points in a single 

population, 100 generations, 5% probability of mutation, 500 parents, 4 children per parent pair, 

and initial annealing temperature of 10. The optimization convergence is shown in Figure 2. The 

best performing individual found after all generations are scored has a Street Score of 68.7. This 

is a little more than a two-fold increase from the existing layout (which was 31.8) and a roughly 

32% increase over the random layouts. The final optimized layout is shown in Figure 3. 

DISCUSSION AND CONCLUSIONS 

Results of our analysis indicate that the average Street Score for the randomly generated 

layouts is significantly higher than the Street Score for the existing neighborhood layout. Perhaps 

even more surprising, the existing layout’s score is about 6 standard deviations below the 

randomly generated layouts’ mean score. It is important to note here that the existing layout 

score could start to approach the random layout score if the parameters 1d , 2d , and 3d  are 

increased. However, this finding still suggests a significant difference between the random and 

existing layouts. This is partially explained by the fact that the existing layout is reminiscent of 

the planning notion of Euclidian zoning. In the existing layout, the shop and restaurant uses are 

generally clustered in the lower right hand side of the grid. This clustering negatively impacts the 

Street Scores for any residential units located relatively far from the cluster (in our case, the 

houses on the upper left). Additionally, the grocery amenity in the existing layout is located all 

the way in the upper left corner of the grid, having a similar effect on the scores for residential 

units on the bottom right. 

The optimization routine seems to converge around a maximum about 32% higher than the 

random layout. This optimized layout (as seen in Figure 3) has a much more dispersed layout of 

amenities. Importantly, the park and grocery amenities are located quite centrally in the grid. In 

addition, the schools are distributed on the left and the right, and the restaurants and shops tend 

to be distributed evenly across the entire grid. This makes intuitive sense: the more distributed 

amenities are, the higher chance that all residential units will be proximate to at least one of each 

amenity—questioning the benefits of Euclidean zoning for walkability in urban neighborhoods. 

The main limitations in this work result from the various assumptions that were involved in 

setting some of the scoring parameters, including the distance parameters and the weighting 

parameters. Future work should consider which parameter values are most appropriate for 

different problem settings. However, while assumptions had to be made, the results still suggest 

important differences between the existing Euclidian-style layout and the more mixed layout 

suggested through optimization. Another limitation of this work is that the optimization and 

analysis were solely focused on an existing neighborhood layout in a real neighborhood. While 

the optimization could be easily applied to a neighborhood designed from scratch, a few things 

would need to be known before optimization: the street grid, the number of each 

building/amenity, and the possible lots for building/amenity placement. Future work should 
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consider the problem of co-optimizing the street grid and possible locations along with building 

placement, as this might provide further insights into the optimal design for the urban fabric. 

Finally, the findings from this analysis should not be the sole input when designing a new 

layout or assessing the performance of an existing layout. To be sure, there are metrics other than 

walkability that should be seriously considered when designing an urban space, such as 

proximity of amenities to transit stops, public health effects, or expected economic activity. The 

relative colocation of a polluting factory with a grocery store may increase walkability, but it 

could have dire consequences for public health. Similarly, it may improve walkability to 

distribute amenities across a given area, but for canonical economic reasons such as those first 

suggested in Hotelling’s law (Hotelling 1929), it may be more economically profitable for two 

similar businesses to be located near each other. While the work presented in this paper cannot 

provide a sole rationale for designing a neighborhood one way versus another, it can provide 

helpful input for urban designers, engineers, and city governments in considering new layouts or 

evaluating existing ones. 
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