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ABSTRACT
To design and manage office buildings that are both energy-efficient
and productive work environments, we need a better understanding
of the relationship between building and occupant systems. Past
data-driven building research has focused on energy efficiency and
occupant comfort, but little work has used building sensor data
to understand occupant organizational behavior and dynamics in
buildings. In this initial work, we present a methodology for us-
ing distributed plug load energy consumption sensors to infer the
social/organizational network of occupants (i.e., the relationships
among occupants in a building).We demonstrate how plug load data
can be used to model activities, and we introduce how statistical
methods—in particular, the graphical lasso and the influencemodel—
can be used to learn network structure from time-series activity
data. We apply our method to a seven-person office environment
in Northern California, and we compare the inferred networks to
ground truth spatial, social, and organizational networks obtained
through validated survey questions. In the end, a better understand-
ing of how occupants organize and utilize spaces could enable more
contextual control and co-optimization of building-human systems.

CCS CONCEPTS
•Applied computing→ Engineering; Sociology; •Computer sys-
tems organization → Sensor networks;

KEYWORDS
Social networks, network inference, organizational theory, building
management, energy efficiency
ACM Reference Format:
Andrew J. Sonta and Rishee K. Jain. 2018. Inferring Occupant Ties: Auto-
mated Inference of Occupant Network Structure in Commercial Buildings.
In The 5th ACM International Conference on Systems for Built Environments
(BuildSys ’18), November 7–8, 2018, Shenzen, China. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3276774.3276779

1 INTRODUCTION
Commercial office buildings fundamentally exist to enable effec-
tive work. Successful office buildings—through their design and
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management—accomplish this by enhancing certain qualities of the
occupant experience, including comfort and productivity. Given
the large environmental impact of buildings, good office buildings
should also aim to be as energy-efficient as possible.

The new paradigm of sensor data availability in buildings has
given researchers more avenues for understanding the operation
of buildings through these lenses of environmental performance
and human activity. Recent work at the building-human interface
has focused on understanding the energy and comfort implica-
tions of building operation, such as occupancy-driven operation
of HVAC and lighting (e.g., [7]). Fewer studies have focused on
using sensor data to model human activity patterns and the natural
structure of occupant relationships in commercial buildings. As
researchers in the field of organizational behavior have long noted,
understanding these relationships can enable more effective space
management, for example by suggesting new office layouts that
improve workplace satisfaction [9]. Organizational relationships,
or ties, are typically modeled through surveys that take consider-
able time and effort to administer. Often, ties are not measured at
all, leaving managers with simple organizational charts that de-
scribe workforce breakdowns by department or project and lack
any subtle insights into the true nature of office relationships. An
understanding of occupant ties has also been shown to be useful
for reducing energy consumption in office spaces. For example,
the efficacy of information campaigns targeted at reducing energy
consumption through individual behavior can be largely attributed
to social network structure [1]. In recent work [10], we have found
that ties can be used to suggest spatial shifts in occupant layouts
to more closely match occupant behavior with energy-intensive
building systems, thereby reducing overall energy consumption.

Among organizational leaders, the importance of understanding
the structure of organizations is well-known. For the University
of California system—whose 2016/17 operating budget is public
data—total employee salaries, wages, and benefits were roughly 74
times more expensive than utility bills, underscoring the notion
that organizations are rational if they prioritize the productivity of
their workforce over energy efficiency. While changes to occupant
behavior and layout can be key areas for reducing energy consump-
tion, managers would be unlikely to make changes if they worry
about disruptions to productivity. At the same time, new research
is showing that changes in spatial configurations of offices can
improve employee wellbeing and communication [5, 9]. As a result,
suggestions for new layouts could be improved if they are made to-
gether with an understanding of their effects on work. Using sensor
data to gain insight into the occupant network through automatic
inference can enable new methods for co-optimizing building and
human systems that are fundamentally intertwined.
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2 RELATED WORK
In the building energy domain, recent work has considered the occu-
pant network as it relates to energy-related behavior and decision-
making among occupants. [1, 10]. In the domain of workspace and
organizational theory, researchers have noted an intimate relation-
ship between office design/layout and occupant satisfaction and
performance [5, 9]. In fact, recent work has pointed to the notion
that spatial configuration can heavily impact key indicators of pro-
ductivity, such as collaboration [5]. An accurate picture of true
relationships among occupants can be a critical tool in understand-
ing the nature of work in buildings, and ultimately for suggesting
spatial shifts that improve occupant performance [9].

While this previous work has noted the importance of under-
standing the occupant network for energy and occupant perfor-
mance, little work has been focused on inferring the true occupant
network. Some statistical and data mining tools have been pro-
posed as methods specifically for inferring network structure from
time-series data. These methods have typically been applied to
biostatistical problems [2], though some recent work has consid-
ered the problem of inferring social networks from time series data
about human activity [8]. In this paper, we adopt network inference
methods for the problem of inferring the occupant network struc-
ture from distributed plug-load energy sensors—sensors which are
becoming ubiquitous and, as discussed in our previous work, can
be used to model individual activity states at the desk level [11].

3 METHODOLOGY
In this section, we introduce a two-step process for inferring the
occupant network from raw sensor data. The first step makes use
of a method introduced in [11]: raw sensor data are collected from
distributed plug-load power strip sensors, and these data are trans-
formed into abstracted states of occupant activities. In the second
step, two different models for measuring occupant activities are
adapted from the literature and introduced for estimating the net-
work relationships among occupants as defined by their activities.
We note that collecting and analyzing data related to occupant net-
work relationships comes with several risks and ethical concerns
if misused (e.g., loss of privacy, potential social embarrassment).
In order to minimize such risks and concerns, we collected and
analyzed data in accordance with the Institutional Research Board
(IRB) and ACM’s Code of Ethics which included creating a transpar-
ent process for obtaining consent for data collection, minimizing
personal information collected and automating anonymization of
data during collection and analysis.

3.1 Determining occupant activities through
plug load energy data

Consistent with previous work [11], we define a time series of
plug load energy use collected at the desk level for each occupant:
Xi,d = {x1, ...,xT } where i is the occupant index (for all occupants
1, ..., I ), d is the day index (for all days 1, ...,D), and T is the total
number of time steps at which data are collected in a single day
(e.g., if data are collected at 15-min intervals, T = 96). For the full
dataset, we complete a component selection process based on varia-
tional Bayesian inference to determine the number of activity states
present in the plug load data (the method is designed to adapt to

different building settings, so that the number of states can be vary
among study areas). An activity state can be defined as abstracted
and categorized information describing occupant behavior based
on plug load energy consumption. Once the number of activity
states is inferred, we complete a classification process that ascribes
each plug load energy datum to an activity state. The result is an
abstracted time series that describes overall changes in activity
states for all occupants in the study: Xi,d 7→ Si,d where S contains
the activity states. At each time interval, all occupants are classified
into one of the same number of states. For complete details on this
state classification method, we refer the reader to [11]. In this work,
we have found that plug load sensors provide accuracy comparable
to sensors specifically designed for occupant detection, and we
have shown that shifts between states correspond accurately which
actual changes in behavior, such as going to a meeting.

3.2 Estimating the occupant network
Given time series data about occupant activities, the next step is to
infer the occupant network as defined by relative similarities in the
activity data.We define an occupant network as a graphG = (V,A),
whereV is the set of occupants and A is the adjacency matrix of
the graph. We explore two options for inferring the adjacency
matrix: the graphical lasso, which estimates the inverse covariance
matrix—often interpreted as a graphical adjacency matrix [2]; and
the influence model, which estimates an ‘influence matrix’ that is
commonly used to describe tie strengths in a network [8]. In this
previous work, each of these methods has been shown to scale well
to large networks and large time series.

Graphical lasso: The graphical lasso was developed as a method
for inferring sparse undirected graphical models—also known as
Markov random fields—through L1 (lasso) regularization. In the
literature [2], the data are defined as N multivariate observations
with dimension p, mean µ, and covariance Σ. In our case, N = D ·T
(the total number of time steps), and p = I (the number of work-
stations/individuals). The graphical lasso makes use of coordinate
descent to estimate the inverse covariance matrix (Σ−1), which is
often considered as the adjacency matrix in a Markov random field.

Influence model: The influence model, discussed in [8], models
the interaction among entities quite differently. The model is based
on a generally coupled Hidden Markov Model (HMM), in which
the state of each entity (in our setting, Si ) at any given time point t
is determined by the state of all entities S1, ..., I at the previous time
point t − 1. A graphical representation of the Influence Model is
shown in Figure 1. The authors use Expectation Maximization to
estimate the parameters of the model. One of the key parameters
of the model that is learned is the matrix R—the ‘influence matrix’—
often interpreted as an adjacency matrix in a network.

The output of each model is a matrix that we consider as the
adjacency matrix defining a weighted, directed network. For con-
sistency, we refer to these matrices as Aglasso and Ainfl, where the
entry Ai, j represents the strength of the tie from occupant i to
occupant j. The two models proposed here for learning network
structure are based on fundamentally different assumptions. In the
graphical lasso, the entries of the Aglasso can be interpreted as mea-
sures of conditional dependence (i.e., if the entry i, j is zero, entities
i and j are conditionally independent given all other variables).
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Figure 1: Influence model schematic with I entities (adapted
from [8]), where S indicates state, and x indicates the signal.

In the influence model, the entries of Ainfl can be interpreted as
the strength of influence between two entities given the time-step-
dependent HMM assumptions embedded in the model. Fitting each
of these models to the data may provide different insights (e.g., the
graphical lassomay effectively model structural relationships, while
the influence model may be better at capturing spontaneous trends
in behavior, such as when two occupants take a break together).

4 RESULTS AND DISCUSSION
To analyze the performance of our occupant network inference
methodology, we applied it to a dataset from a three-room, seven-
person office setting in Northern California. We collected plug load
energy consumption data at 15-minute intervals through HOBO
data loggers for a two-week period at each of the seven occupants’
individual workstations. Each workstation included a computer
and possibly a monitor and other small office loads (e.g., phone
charger). We applied the network inference method from section
3, producing two networks defined by adjacency matrices Aglasso

and Ainfl. We also collected ground truth spatial, social, and organi-
zational network data through an online survey (discussed below)
to benchmark the inferred network against validated methods for
capturing strengths of relationships.

We assume that the ground truth network can be characterized
by three equally important relationship components: spatial, so-
cial, and organizational. Previous work has suggested these three
components are fundamental to the similarities and dissimilarities
in occupant behavior [10], but future work should consider how
each individual network component relates to the inferred network
structure. We refer to each ground truth network component as
A∗spatial, A∗social, and A∗organizational.

Spatial dimension: To embed the spatial dimension in the ground
truth network, we set the entryA∗spatial

i, j = A∗spatial
j,i = 1 if occupants

i and j are situated in the same office, and 0 otherwise.
Social dimension: For the social dimension, we used the results

from a survey question answered by all occupants. We adopted the
‘inclusion of the other in the self’ scale [3], which has been shown
to be effective in measuring the closeness of social relationships. In
the survey, each occupant can choose any value between 1 and 7
to describe their perception of the closeness of their relationship to
all other occupants. These values are then linearly scaled between
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Figure 2: Network comparison using node2vec representa-
tions in R2 (the two axes represent the two dimensions). Col-
ors represent the occupant indices.

0 and 1, and they become the entries in the A∗social matrix, where
occupant i’s response about occupant j becomes the entry A∗social

i, j .
Organizational dimension: We adopt the methods introduced in

Krackhardt & Hanson [6] to measure the structure of the orga-
nizational network among the seven occupants. The survey asks
occupants whom else they (1) share information with, (2) seek
technical advice from, and (3) seek personal advice from. The rela-
tionship is interpreted to be 0 if none of the three are true and 1 if
all three are true, with a linear scale between 0 and 1 if one or two of
the characteristics of organizational relationship are true. Occupant
i’s response about occupant j becomes the entry A∗orgnizational

i, j .
We combined the individual components of the overall ground

truth network using a weighted sum function with the three com-
ponent networks equally weighted, and we refer to this combined
overall ground truth network asA∗. It is difficult to directly compare
the overall structure of two networks, though certain network-level
techniques (e.g., community detection) or node-level techniques
(e.g., degree centrality) can be used. However, we choose to com-
pare the inferred adjacency matrices to the ground truth network
by adopting the node2vec algorithm introduced in [4]. The pur-
pose of the node2vec algorithm is to map nodes from a network
to n-dimensional feature representations based on the topology of
the network, where n is chosen by the user. The algorithm can be
used for dimensionality reduction and enables visual and compu-
tational comparisons between networks, where: the smaller the
Euclidean distances between two nodes in the feature space in Rn ,
the more similar the two nodes are. The results of applying the
node2vec algorithm with n = 2 (for ease of plotting) to each of the
three networks (A∗, Aglasso, and Ainfl) are shown in Figure 2. The
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overall trends in feature representations for each of the networks
are quite similar in Figure 2. Occupants 1 and 7 tend to be cen-
trally located in all 2-dimensional representations. If we define a
simple centrality measure for an occupant in this R2 space as the
sum of Euclidean distances between that occupant and all others,
in all three networks occupant 1 has the smallest value and occu-
pant 7 has either the second or third smallest value. Knowing the
real context of the office environment, this trend makes intuitive
sense: occupant 1 is the director of the group, and occupant 7 is
the highest-ranking member in the organizational structure, who is
often relied on for work-related information and advice. Occupant
6, however, is also centrally located near occupants 1 and 7 in the
2-dimensional representation of the nodes. While this occupant has
no structural centrality in the organizational network, inspection
of the overall ground truth network reveals that this occupant has
relatively strong ties as measured by degree centrality in the ground
truth network. Occupant 6’s in-degree centrality (

∑
i A∗

i,6) is larger
than the mean in-degree centrality, and their out-degree centrality
(
∑
i A∗

6,i ) is the largest. The survey data shows that this occupant’s
degree centrality results in large part from the social and spatial
components of the ground truth.

This inclusion of occupant 6 as one of the central nodes in the 2-
dimensional representations of the network demonstrates the value
of the automated network inference method proposed in this paper.
While a manager of an organization might guess that occupant 1
(the director) or 7 (the highest-ranking member) would be central
nodes in the network, he or she might not be able to guess that
occupant 6 also has a relatively central role. When scaled to large
networks, analyses such as these could provide subtle insights into
the true structure of the occupant network that could not easily be
obtained simply by knowing the structure of the organization. We
can also observe from Figure 2 the difference in the vector repre-
sentations of occupants 2 (orange) and 5 (cyan). While occupant
2 is far away from the central cluster in the graphical lasso net-
work (squares), he or she is more centrally located in the influence
model network (triangles). This may suggest that the two models
are biased toward capturing different types of relationships given
their different assumptions. According to the social component of
the ground truth survey, occupants 4 and 5 are close friends, while
2 and 5 are not. Because the influence model assumes that each
entity’s state at time t is influenced by all entities’ states at time
t − 1, it may be more capable of capturing spontaneous similarities
in behavior among occupants. For example, given occupant 4 and
occupant 5’s social relationship, they may be more likely to take
breaks or eat lunch together, resulting in the similarities shown in
the R2 representation of Ainfl.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduce a method for automatically inferring the
structure of the occupant network from plug load energy consump-
tion data collected at the desk level in an office setting. We have
shown that the method is capable of capturing network relation-
ships and centralities that are both expected based on high-level
organizational structure and that are ‘hidden’ in more subtle aspects
of occupant relationships (e.g., friendships and spatial configura-
tion). In a 7-person office study, we show that both the graphical

lasso and the influence model are capable of capturing these key
centralities, and we discuss how some key differences in assump-
tions might affect eachmodel’s network inference output.While the
small size of the study limits generalizability of our inferences, our
results do demonstrate the potential for this method to effectively
and automatically infer organizational structure. Future work is
required to methodically demonstrate that inferences like the ones
we describe above can be made in larger, more complex settings.

In future work, we aim to more fully explore the difference
between each of the modeling techniques as they related to inferred
network structure. Additionally, we aim to explore how using data
from different times of the day might impact the inferred network
structures (e.g., employees might tend to have similar behavioral
patterns as their friends during lunchtime, versus similar patterns
as their teammates during other hours). Similarly, by extending
these inference models to allow the networks to change over time,
future work can begin to understand the co-evolution of space
design and organizational science and how such insights could
inform control paradigms for commercial buildings that co-optimize
building and occupant systems. In the end, a deeper understanding
of the occupant dynamics within a building could enable the design
and management of productive and energy-efficient spaces.
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