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Problem: We want to designh energy-efficient and Learning the socio-organizational occupa nt Methodology Details: Combining data and knowledge
productive workplaces
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Question:

How can we understand key
relationships within
organizational structure?
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Common network inference algorithms from the literature—the graphical lasso
and the influence model—are unable to capture socio-organizational structure

Ground Truth: Survey questions from social science

To validate and benchmark the goal—the inferred network—against the actual 2-D node
structure of the organization, we conducted a survey asking occupants about both embedding
social and organizational ties [1].
Response rate = 72%

enables us to better uncover the opportunity for social interaction in a
building—and therefore, socio-organizational structure

Knowing this structure will enable the preservation of key relationships

0 Leveraging domain knowledge about the meaning of occupant activity states

SOCIAL ORGANIZATIONAL when designing new layouts that optimize for both energy efficiency
B ONI Graph and organizational objectives (e.g., productivity, collaboration)
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